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Mountainous areas are challenging to manage and maintain access due to their remoteness and 

steep topography.  Shifting hydrologic regimes from changing climate are projected to intensify 

these challenges.  Of particular concern are the effects and uncertainties from climate change on 

hillslope stability that may lead to increased landslides, which adds sediment to streams, elevates 

flooding, and impacts downstream natural and built resources. This dissertation aimed to 

improve mapping landslide hazard by integrating process-based and data-driven statistical 

models.  To achieve this, we organized the dissertation into four chapters that begins with 

motivation and background (Chapter 1) and a climate change vulnerability assessment to access 

over a large regional area (Chapter 2).  Chapter 3 describes a new probabilistic model of shallow 

landsliding based on a physical model that is coupled with a macro-scale hydrologic model and a 

soil evolution model explicitly addressing spatial and temporal uncertainty.  This physical model 

is integrated with a statistical model relating observed landslides with local site factors 
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predisposing a hillslope to fail to produce regional-scale landslide hazards from initiation, 

transportation, and deposition processes (Chapter 4).     

 

Concerns about hillslope stability were identified during one of the largest climate change 

adaptation efforts undertaken on federal lands. This effort included a transportation vulnerability 

assessment conducted with research scientists and federal land managers of two national parks 

and two national forests in north-central Washington, USA.  During this assessment documented 

in Chapter 2, one of the top four infrastructure sensitivities recognized was increased damage 

associated with landslides from projected higher winter soil moisture caused by changes in 

seasonal precipitation and snow accumulation.  Numerous strategies were identified to increase 

resistance and resilience of the transportation system to this impact pathway, including 

information needs such as “site-specific stability analysis based on soil and geologic 

information” and “identification of areas sensitive to high landslide frequency.”  This 

dissertation takes on these information priorities by developing regional landslide models and 

demonstrates the models in one of the four jurisdictions: North Cascades National Park Complex 

(NOCA), Washington. 

 

Chapter 3 of the dissertation describes our development of a hydro-climatological approach to 

modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions 

of parameter uncertainty. The physically-based model estimates annual probability of landslide 

initiation by solving the infinite slope stability equation coupled to steady-state topographic flow 

routing using a Monte Carlo approach. The uncertainty of soil depth often ignored in landslide 

hazard modeling is address by a soil development model, and subsurface flow recharge is 
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obtained from the Variable Infiltration Capacity macro-scale hydrologic model. Thus, the model 

design allows for use of future hydrologic projections to estimate changing landslide probability 

as climate and landscape evolve. The model is available as a component in Landlab, an open-

source, Python-based landscape earth systems modeling environment. It is designed to be easily 

reproduced and applied in various locations utilizing HydroShare cyberinfrastructure; therefore, 

it can be implemented in the other three federal jurisdictions and elsewhere.   

 

To better understand landslide transport and deposition impacts, we develop empirically-based 

probability hazard maps from a statistically-derived susceptibility index explained in Chapter 4 

of this dissertation.  This empirical model integrates the influence of seven site attributes on 

observed landslides, inventoried by NOCA park personnel, using a frequency ratio approach. 

The attributes assessed included: elevation, slope, curvature, aspect, land use-land cover, 

lithology, and topographic wetness index. The physically-based and empirically-based models 

were then combined to produce an integrated probabilistic map of landslide hazard for initiation, 

transport, and deposition processes. Thus, these maps identify locations of high and low 

probability of landslide impacts within the NOCA that can be used by land managers in their 

design, planning, and maintenance.  Improved tools such as these with incorporated uncertainty 

can be used to reduce system vulnerabilities and lead to adaptations that allow continue use of 

natural areas with reduced risks.   
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Chapter 1. Introduction 
 

1.1  Motivation 
During the past few decades, federal agencies in the United States that manage large areas of 
land have become increasing challenged by aging infrastructure and changing environmental 
conditions along with increased public demands (Raymond et al., 2014; Albano et al., 2014; 
Peterson et al., 2011). Maintaining access to natural areas of rugged terrain is demanding and 
hydrologic extremes are a recurrent source of infrastructure damage (Tohver et al., 2014; Meyer 
2008; NRC 2008). Uncertainty in how changing climate will alter demands on managing 
resources and built infrastructure is particularly concerning to agencies (Hayhoe and Kopp 2016; 
Mauger 2011; Millar et al. 2007).  During a workshop with numerous agencies convened to 
discuss these concerns, managers identified several impacts from climate change potentially 
affecting their ability to deliver historical benefits and services in the future in Washington state 
(Strauch et al. 2014).  One of the greatest angst among managers was the potential for increased 
landslides with projected increases in soil moisture (Hamlet et al. 2007), which can have 
considerable effects to downstream aquatic and built resources (Baum et al., 2008; 
Istanbulluoglu and Brass 2007; Pollock 1998).  For example, intense storms in autumn 2003 and 
2006 caused flooding and landslides throughout the Washington, leading to millions of dollars in 
damage to roads and trails and a 6-month closure of Mount Rainier National Park, followed by 
years of repairs. 
 
In the Western U.S., landslides are a major mechanism of landscape change (Perron 2017). Most 
landslides initiate on hillslopes, evolve into debris flows, and deliver sediment to streams (Benda 
and Dunne 1997; Iverson et al 1997). The initiation process is typically controlled by soil and 
root cohesion, soil internal friction angle, local slope, and subsurface flow pore-pressure. 
Changes in pore-pressure, typically from heavy or continuous rain and snowmelt, can quickly 
affect the stability of a slope and have been responsible for triggering more landslides than any 
other factor (Crozier 1986). Landslide hazards in the Western U.S. are expected to grow with 
climate change (Coe 2016), but to date, geologic landslide research has been typically conducted 
independently from hydroclimate research (Corominas et al., 2012; Lee 2005; Chung and Fabbri 
2003). Prior research has frequently focused on headwater catchments, and this research’s 
dependence on highly-localized measurements prevents it from being extended to regional and 
hydroclimate scales.  There is need to unify geologic and hydroclimatic research to provide 
regional-scale landslide prediction for resource management and climate adaptation strategies. 
 
We are frequently faced with situations and choices that involve randomness and uncertainty.  
We want to make sense of the situation, make better choices, and more clearly understand the 
world around us.  We can’t predict uncertain events with certainty, but perhaps we can apply a 
probability perspective that allows us to understand the uncertainty surrounding us.  Whether 
we’re an engineer or scientist, uncertainty plays a role in our understanding, design, and 
hypotheses.  This dissertation seeks to better understand the undefined and changeable 
phenomenon of landslides, particularly concerning to decision makers. I attempt to shed light 
and provide insights and tools to help them cope with uncertainty and advance informed 
judgements, strategies, and policies. 
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My research focuses on developing a regional-scale distributed numerical model in conjunction 
with landslide observations across the Washington’s North Cascades mountains. North Cascades 
experience landslides across a wide a range of climates, vegetation, and topography (Mustoe and 
Leopold 2014). Thus, research in this region is relevant to mountain areas across the globe. The 
project develops the modeling technology and shows proof-of-concept simulations relevant to 
addressing management and planning questions. The technology employed in this study 
advances landslide hazard identification for risk assessments and provides decision support tools 
for land management over large regions now and into the future. Specific landslide related 
research questions addressed by this research include the following: 

1)   What are the relative roles of location (geology, topography, slope) vs. climate (recharge 
rates) on landslide location and relative frequency? 

2)   How well does a new, transformative model combining the methods of geotechnology, 
geology, and hydroclimate prediction reproduce past spatial-temporal patterns and 
frequencies of landslides?  

1.2  Backgrounnd 
Heightened awareness and concerns regarding potential impacts to built and natural resources from 
climate change motivates the need for better information on impacts to guide potential adaptations 
strategies (Snover et al. 2007).  Information on where and when impacts may occur is critical.  In 
particular, the propagating effects of climate dynamics on geomorphology through ecohydrology is 
vital to understand geohazards at management-relevant spatial and temporal scales. Assessing risk 
and vulnerability begins with understanding the impact and uncertainties. Vulnerability 
assessments benefit from input from both scientist and managers, which combines theoretical 
knowledge with institutional knowledge and practices (Wall and Meyer 2014; Mickalak et al. 
2013; Peterson et al. 2011). Collaborations among scientist and resource managers can help 
identify relevant data, specific impacts, and interpret results (Kloprogge and Van der Sluijs 
2006). Thus, in the research presented in this dissertation, we worked closely with resource 
managers to strengthen the source of data, decipher patterns in modeling results, and produce 
tools and products beneficial to their management directives. 
 
A key challenge in landslide assessments and use by practitioners is the complexity of the 
assessments themselves: finding and acquiring the relevant data, processing and analyzing the 
data, mapping and interpreting results, and sharing the results in a format practical for authorities 
and decision makers. There is a plethora of data available and we have emerged into e-science 
computationally-intensive environment requiring an integrated cyberinfrastructure to process, 
collaborate, and share information to better understand complex systems such as hillslope 
stability (Borgman et al., 2015; Newman et al. 2003).  It can be daunting to identify and acquire 
distributed data on site characteristics, triggering factors, landslide inventories, and elements at 
risk, especially at a large geographic scale. The isolated, sporadic and relatively small scale of 
landslides compared to other hazards such as floods, makes an inventory quite tedious, 
particularly in remote locations (Van Westen et al. 2005). Additionally, science and products 
based on a finite suite of data in time and space becomes less useful as conditions and theories 
change.  This is true for landslide assessments where the precondition of sites can change due to 
disturbances such as fire (Luce et al. 2012) and triggers can transform in the case of continued 
climate change (Crozier 2010).  Landslides themselves alter the local hazard. Therefore, a robust 
landslide model should: (1) be flexible enough to incorporate changes in intrinsic and extrinsic 
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conditions, such as vegetation and climate; (2) account for spatial variability in model parameters 
and forcings, (3) integrate spatial and temporal dimensions of uncertainty to quantify landslide 
probability, and (4) be reproducible and customizable to fit the needs of scientist and managers 
(Tarboton et al. 2014; Horsburgh et al. 2016). 
 
Land management and regulatory agencies need maps of areas affected by landslides as well as 
the chances of landslide impacts to consider in project, policies, and decision making, including 
mitigation and adaptation measures (Corominas et al. 2014).  Landslide hazard maps and 
analyses need to be quantitative to support risk assessments (Van Westen et al. 2005). It is also 
important to identify impacts from different types of landslides and various components of 
landslides (i.e., initiation, transport, and deposition).  Our modeling approach combines the 
advantages of empirically-based landslide hazard assessment with the strength of mechanistic, 
processed-based stability analysis typically applied at small scales but driven by the dynamic 
climatology provided by a macro-scale hydrological model. The aim of this landslide assessment 
approach is to create a parsimonious model that requires relatively few, broadly available, and 
spatially distributed input data.  Data uncertainty due to spatial and temporal variability of 
parameters continues to be one of the major challenges in predicting landslides over broad 
regions (Sidle and Ochiai, 2006; Baum et al., 2014; Anagnostopoulos et al., 2015). To capture 
uncertainty in these data, we employ a Monte Carlo approach in the physical model and estimate 
probabilities of landslide impacts, which systematically accounts for uncertainty and variability 
in stability analysis (Hammond et al., 1992) and more appropriately represents complex systems 
(Berti et al., 2012).  
 

1.3  Dissertation Structure 
My dissertation is structured as three main chapters, following this introduction chapter. The 
motivation for researching landslide hazards was generated from contemporary concerns about 
recent damage to transportation infrastructure and potential future escalating damage as climate 
changes.  Chapter 2 details a vulnerability assessment that triggered more in-depth research on 
landslides from knowledge gained in workshops with federal agencies tasked with managing 
access to public lands.  Chapter 3 takes on the challenge identified in the workshop and develops 
a physical model of probability of shallow landslide initiation.  This model is developed in 
Landlab, an open-source earth system modeling toolkit, to meet the four objectives of robust 
landslide model identified above. To address concerns about landslide features other than source 
areas, Chapter 4 describes an empirical landslide model and how this was integrated with the 
physical model to produce a probabilistic landslide hazard map for impacts from initiation, 
transport, and deposition zones.   
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Note: This chapter has been published in its current form as an article in Climatic Change 
(Strauch et al., 2015); the only differences are in the section, figure, and table numbering.  It is 
used here by permission of Springer Netherlands. 
 
Abstract 
Research scientists collaborated with federal land managers of two national parks and two 
national forests to conduct a climate change vulnerability assessment and to identify adaptation 
strategies for a transportation network covering 28,900 km of roads and trails in north-central 
Washington, U.S.A. The assessment employed observations of sensitivity and response to 
climatic variability, downscaled climate projections, literature reviews, current management 
policies and practices, expert knowledge, and stakeholder engagement. Primary pathways for 
climate impacts focused on projected increases in extreme high flows and flooding, elevated 
winter soil moisture and landslide hazards, and loss of snowpack. The biggest impacts to roads 
and trails are expected from temperature-induced changes in hydrologic regimes that enhance 
autumn flooding and reduce spring snowpack. Projected higher winter soil moisture caused by 
changes in seasonal precipitation and snow accumulation could reduce slope stability. Earlier 
snowmelt may lengthen the snow-free season for visitor use and agency operations. 
Infrastructure age, design, maintenance, location, use, and limited redundancy along with 
funding policies and management, influence the sensitivities of the transportation system. 
Vulnerabilities were identified based on when and where these sensitivities to changes in climate 
may emerge. Adaptation strategies and tactics identified to address these vulnerabilities included: 
upgrading stream crossing and drainage design, changing use and maintenance, relocating or 
closing roads and trails, modifying funding policies, and expanding public engagement. Many 
adaptation options are “no regrets” approaches to changes in climate projected for the 2040s and 
2080s that can be applied to other resource sectors and mountainous regions.  

2.1  Introduction  
During the past century, roads and trails in the United States in remote locations were built to 
extract furs, minerals, timber, and energy. Travel along roads and trails is now primarily 
associated with recreation, and is the principal means by which the public visits the nation’s 
parks and forests (Louter 2006). Safe and strategic access to and within public lands is vital for 
facilitating recreational enjoyment, education, managing natural resources, and responding to 
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emergencies. However, maintaining roads and trails in areas of rugged terrain is challenging, and 
hydrologic extremes are a recurrent source of infrastructure damage. Climate variability strongly 
influences the timing and location of land management activities and visitor use. Because climate 
change has the potential to affect whether or not specific land areas will deliver historical 
benefits and services in the future, understanding the extent and magnitude of climate change 
impacts on travel on federal lands is needed to minimize consequences. The U.S. Forest Service 
(USFS) and National Park Service (NPS) are adapting transportation planning and management 
activities as part of a broader effort to ensure sustainability (USDI NPS 2010; USDA FS 2010).  

A multi-agency partnership was created in 2010 among four federal jurisdictions in Washington 
State that share common borders and a vision to address climate change impacts that cross 
jurisdictional boundaries (Raymond et al. 2013, 2014; Strauch et al. 2014). The North Cascadia 
Adaptation Partnership (NCAP) includes Mount Rainier National Park (MORA), North 
Cascades National Park Complex (NOCA), Mount-Baker Snoqualmie National Forest 
(MBSNF), and Okanogan-Wenatchee National Forest (OWNF). These contiguous federal lands 
occupy over 24,000 km2 in north-central Washington and contain 28,900 km of roads and trails 
(Fig. 2.1). The NCAP landscape is part of the Cascade Range, oriented north to south with high 
topographic relief (184 m to 4392 m). Mean annual temperatures are similar on both sides of the 
Cascade Range, but the eastside has higher seasonal variability. Abundant mountain precipitation 
supports over 67,000 km of streams and rivers and vegetation dominated by coniferous forest, 
except at the elevation extremes where vegetation transitions to shrubs and meadows.  

The NCAP identified climate change effects on the transportation system as a high priority 
because of recent impacts associated with extreme storms and the importance of access to public 
lands. For example, intense storms in autumn 2003 and 2006 caused flooding and landslides 
throughout the NCAP landscape, leading to millions of dollars in damage to roads and trails, a  
6-month closure of MORA, followed by years of repairs. Transportation infrastructure is 
increasingly compromised by interrelated climate change impacts (Schwartz et al. 2014; Maurer 
et al. 2011). However, adaptation strategies in the transportation sector have received less 
attention than mitigation for transportation-related greenhouse gas emissions (GHG) emissions 
(Chapman 2007; NRC 2008). This paper describes a vulnerability assessment that examines 
transportation adaptation in the context of the NCAP landscape. The context is unique compared 
to urban and suburban transportation systems because of the multiple federal lands, large 
contiguous geographic area in rugged terrain, extensive network of mostly dirt roads and trails, 
and relatively low average daily travel on many routes. Furthermore, there is an emphasis on 
visitor uses and seasonal access, protection of aquatic species, and maintenance rather than 
expansion of infrastructure with minimal development pressures.  

Mountain ecosystems are acutely sensitive to climate change (IPCC 2007), and some portions of 
the Pacific Northwest (PNW) are particularly sensitive to climate-induced loss of snowpack and 
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Fig. 2.1 The National forests and national parks that comprise the core of the North Cascadia Adaptation 
Partnership (NCAP) landscape cover a total land area of 2.4 million ha and are surrounded by several 
other municipal, state, federal, private, and tribal ownerships  

changes in hydrologic regime (Elsner et al. 2010; Mote and Salathé 2010; Hamlet et al. 2013). In 
the PNW, warming observed over the 20th century (+0.7 °C since 1906) is expected to continue 
and intensify, with annual average temperatures 3.2 °C warmer by the 2050s compared with 
historical (1950–1999) averages and greater warming projected later in the century (Snover et al. 
2013). Climate models project little change in annual precipitation, but seasonal precipitation is 
projected to change with more precipitation in autumn, winter, and spring, and less in summer 
(Mote and Salathé 2010). Precipitation intensity is also projected to increase (Snover et al. 2013). 
Snowpack is projected to decline further in Washington with reductions in April 1st snow-water 
equivalent (SWE) of 38 to 46 % by 2040 compared with historical averages (Elsner et al. 2010). 
Warming and changes in seasonal precipitation in the NCAP landscape generally result in 
increased soil moisture and streamflow in autumn and winter and higher peak flows (Hamlet and 
Lettenmaier 2007; Hamlet et al. 2013; Mantua et al. 2010).  

2.2  Approach and methods  
Collaboration among scientists and agency resource managers is vital to understanding specific 
impacts on access and to identifying climate change adaptation strategies (Kloprogge and Van 
der Sluijs 2006). Accordingly, the NCAP held a workshop on climate change, hydrology, and 
access that convened resource managers, scientists, engineers, and representatives of recreation 
groups to assess vulnerabilities of access to climatic variability and change (see supplemental). 
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Resource managers identified impacts of current climate on the transportation system and trends 
in recent impacts associated with extreme weather and climate change. Scientists supported the 
vulnerability assessment by focusing on three pathways by which climate change directly 
influences access in mountain landscapes: (1) extreme high flows and flooding, (2) less snow 
and extended warm season, and (3) elevated winter soil moisture and landslide hazard. These 
pathways were considered the most relevant to the NCAP landscape by workshop participants 
given current impacts and sensitivities, topography, and climate.  

Projections of average temperature and precipitation in the vulnerability assessment were 
generated from an ensemble of 10 global climate models (GCMs) based on the A1B GHG 
emissions scenario, which aligns with the current emission trajectory (Nakićenović and Swart 
2000). Ensemble averages report the central tendency of the projections; two additional GCMs 
(PCM1 and MIROC 3.2) were used to provide a range of future climates based on variations in 
model sensitivity from the 10 GCMs. PCM1 simulates relatively lower increases in annual 
temperature and slightly drier conditions in the PNW for the 2040s (“least warming and drier”). 
MIROC 3.2 simulates relatively larger increases in annual temperature and wetter conditions 
(“most warming and wetter”) (Littell et al. 2011). Downscaled projections of temperature and 
precipitation were applied as monthly changes to meteorological inputs to the Variable 
Infiltration Capacity (VIC) macroscale hydrologic model (Liang et al. 1994; Elsner et al. 2010). 
The VIC model implementation provided hydrologic information at 1/16th degree resolution 
(about 34 km2 grid cell), and routed flows were used for projected changes in streamflow 
(Hamlet et al. 2013; Tohver et al. 2014). Details on these datasets are available in Hamlet et al. 
(2013) and Littell et al. (2011). Snowpack simulations were available from a high-resolution 
version of the VIC model implemented at 800-m resolution (Mauger 2011).  

In similar studies, extreme flooding was defined as the 100-year flood (the annual peak flow with 
a 1 % probability of exceedance, or Q100) and changes to Q100 were reported as a ratio of 
future Q100 to historical Q100 (Tohver et al. 2014). Projections of hydrologic variables were 
provided for the 2020s, 2040s, and 2080s using GCM statistics from a 30-year time window to 
generate 91 years of climate-adjusted data (see Tohver et al. 2014). Hydrologic response was 
characterized by basin type determined from simulated spring snowpack and cool season 
precipitation (Hamlet et al. 2013): (1) rain-dominant, (2) mixed-rain-and-snow, and (3) 
snowmelt-dominant, depending on percentage of winter precipitation entrained in spring 
snowpack (<10 %, 10–40 %, and >40 %, respectively). Although VIC does not simulate slope 
stability failures or landslides, projections of soil moisture from VIC were used as an indicator of 
landslide hazard. The PNW typically experiences highest precipitation in November and 
December, and climate models project increases in future autumn precipitation in Washington 
(Mote and Salathé 2010). Therefore, the percent change in VIC projections of total column soil 
moisture on December 1 were used to indicate future slope stability associated with elevated soil 
moisture (Crozier 1986). To understand the influence of snow on seasonal access, the change in 
date when 90 % of snow is melted in spring was assessed.  

Using these impact pathways and climate projections, scientists, engineers, and resource 
managers identified vulnerabilities of infrastructure to climate change. Vulnerability was 
qualitatively determined by the exposure, sensitivity, and adaptive capacity of the transportation 
system to changing climate. Exposure was determined using spatial data on projected changes in 
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hydrologic processes relevant to access. Sensitivity was determined by assessing qualities of the 
transportation system that influence the degree to which it could be affected by climate change, 
including location, design, use, management, current condition, and recreation patterns. Adaptive 
capacity was determined by reviewing the ability of current management practices and policies 
to respond and adjust to the influence of climate. Vulnerabilities were based on expert local 
knowledge and current climate-related impacts, combined with projections of changes in climate 
and hydrologic regimes. These vulnerabilities were refined with further literature review, data 
analysis, and discussions among scientists and agency staff (Snover et al. 2007; Peterson et al. 
2011). The assessment process was a first step in identifying vulnerabilities by agencies within 
NCAP that have limited financial and personnel capacity for climate change planning. Thus, a 
more parsimonious process was followed similar to Michalak et al. (2013) rather than a 
prescribed risk management framework often used in the transportation sector (Wall and Meyer 
2013; Maurer et al. 2011).  

Based on initial vulnerabilities identified at the workshop, participants identified adaptation 
strategies, and opportunities and barriers to implementing strategies within institutional 
processes, policies, and practices. Workshop participants focused on three adaptation strategies: 
1) creating resistance (i.e., “hardening”), 2) increasing resilience, and 3) enabling systems to 
respond to a changing climate (Millar et al. 2007). On-the-ground tactics were identified for 
implementing general strategies. Given current climate change uncertainties and the limited 
capacity of both agencies for adaptation planning, the group identified “no regrets” actions as 
likely first steps towards adaptation, but also recognized the value of actions addressing sizeable 
impacts or reducing long-term consequences. No regrets actions satisfy other agency goals, such 
species protection or improved ecological function, with the co-benefit of reducing the impacts 
of climate change (Peterson et al. 2011).  

2.3  Results  
2.3.1  Vulnerability assessment  
2.3.1.1  Climate change exposure  
Flooding in the PNW is a function of precipitation intensity and duration, freezing elevation 
during storms (which determines where precipitation falls as rain or snow), and effects of 
temperature and precipitation on seasonal snow and soil moisture (Hamlet and Lettenmaier 2007; 
Tohver et al. 2014). The flood regime is largely determined by basin types, which are projected 
to shift as climate changes (Fig. 2.2). Within the NCAP landscape, 26 watersheds are currently 
rain-dominant basins, containing 19 % of the landscape’s 19,591 km of roads, 34 are currently 
mixed-rain-and-snow basins with 48 % of roads, and 27 are snowmelt-dominant with 33 % of 
roads. By the 2040s, the ensemble projections are for equal number (39) of rain- dominant and 
mixed-rain-and-snow basins; only 9 are projected to remain snowmelt-dominant. Autumn and 
winter flood hazard in the Cascade Range is projected to increase with more autumn and winter 
precipitation, coupled with warmer temperatures that raise freezing elevations, effectively 
increasing basin area during storms (Hamlet and Lettenmaier 2007; Mantua et al. 2010; Tohver 
et al. 2014). The largest increases in flood hazard are expected in mixed- rain-and-snow basins 
where current mid-winter temperatures are within a few degrees of freezing (Hamlet et al. 2013; 
Tohver et al. 2014). Most of the coldest snowmelt-dominant basins at high elevation in the 
NCAP landscape are expected to continue to experience peak flows in spring, but with smaller 
and earlier peak flows by the 2040s. Some snowmelt- dominant basins may experience a small 
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increase in flooding due to more snowpack resulting from persistent cold mid-winter 
temperatures and more cool-season precipitation.  

  
 
Fig. 2.2 Projected shift in watershed basin type in the NCAP landscape from historical (upper panel) to 
the 2040s (2030–2059) and 2080s (2079–2099) (lower panels). Basins represent the spatial resolution of 
10-digit hydro- logic unit codes (HUC), or the 5th level watershed classification as delineated by the U.S. 
Geological Survey. Basin classification is defined by the percent (shown in legend) of cool season (Oct.–
Mar.) precipitation captured in the April 1 snow water equivalent (SWE). Future projections were 
modeled using the A1B emission scenario and an ensemble of 10 GCMs. Inset graph shows the percent of 
each basin type for each time period  

By the 2080s, only two basins within the NCAP landscape may remain snowmelt-dominant, but 
contain less than 1 % of the roads. Many of the current mixed-rain-and-snow basins may 
transition to rain-dominant basins in the future, shifting annual peak flows that historically 
occurred during spring snowmelt to rainy periods in autumn and early winter (Tohver et al. 
2014). Extreme floods (e.g., Q100) are also projected to increase throughout much of the NCAP 
landscape, particularly by the 2080s. The highest increases are projected for the east side of the 
Cascade crest, where Q100 is projected to be more than double the historical value in several 
watersheds (Fig. 2.3).  

Shifts in basin type and Q100 are expected to alter flood exposure of roads and trails, although 
the rate and magnitude of change (i.e., road kilometers associated with shifting basin type) and 
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associated management cost may differ by jurisdiction (Fig. 2.4). For example, 78 % of NOCA 
roads and 37 % of OWNF roads are currently in snowmelt-dominant basins; however, by the 
2080s, all roads are projected to be in mixed-rain-and-snow or rain- dominant basins. The cost 
associated with altered flood exposure would be greater for OWNF than for NOCA because it 
contains more roads.  

Climate projections support the hypothesis that landslide-triggering conditions may increase in 
winter because 1) more precipitation is projected to fall as rain rather than snow, 2) soil moisture 
is projected to increase in winter due to loss of snowpack and increased soil infiltration in 
autumn and early winter, and 3) increasingly intense winter storms are projected (Salathé et al.  

 
Fig. 2.3 Shifting trend in the 100-year flood statistic in watersheds within the NCAP landscape. Flood 
level is designated as the annual peak flow with an estimated 100-year return frequency (Q100). The 
flood statistic represents the ratio of Q100 in 2020s, 2040s, and 2080s to historical (1916–2006) levels. 
Ratios >1 indicate increasing peak flows in the future (purple). Ratios <1 indicate decreasing peak flows 
(beige). Gray lines show roads and trails  

2014; Hamlet et al. 2013; Dominguez et al. 2012). These effects would likely vary with elevation 
because higher elevations typically have steeper slopes and more precipitation during storms. By 
the 2040s, December 1 soil moisture is projected to be higher throughout the NCAP landscape, 
particularly at higher elevations and in the east central area, which may become more vulnerable 
to landslides in late autumn and early winter (Fig. 2.5a).  

Projected declines in SWE will likely influence the timing of access to mountain roads and trails 
in the NCAP landscape. Although decadal climatic variability also affects SWE on shorter 
timescales, April 1 SWE has declined over the 20th century due to observed warming and 
precipitation change, and is projected to continue to decline (Hamlet et al. 2005; Mote et al. 
2008). Throughout the NCAP landscape, the date when 90% of winter snow has melted is 
projected to be earlier than historical dates, especially west of the Cascade crest and at low 
elevation (Fig. 2.5b).  
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2.3.1.2  Climate change sensitivity and impacts  
Impacts on access with exposure to climate change, particularly the shifts in hydrologic 
processes, depend on the sensitivity of the transportation network to these exposures. The 
condition of roads and trails varies as a function of age, maintenance, surface treatment, and use. 
Many roads and trails were built decades ago and are near the end of their design life span. 
Advanced design of materials, alignment, drainage, and subgrade that are required standards 
today were generally not available when much of the road network was built. New culverts and 
bridges are often wider or higher (or both) than historical structures to meet hydraulic regulations 
or more stringent design standards. Consequently, new or replaced infrastructure is likely to be 
less sensitive to climate change, especially if climate change is explicitly considered in the 
design.  

Lack of redundancy in a transportation network can cause systemic operational sensitivity when 
damage disconnects critical links in the system. The transportation system in the NCAP 
landscape lacks redundancy in national parks. Numerous roads and trails, especially at high 
elevation, provide sole access to recreation areas. Many roads and trails are built on steep slopes 
or along river corridors, which are sensitive locations impacted by landslides, washouts, and 
flooding. Management of roads and trails (e.g., planning, funding, maintenance, response) differs 
by agency, which can affect sensitivity of the transportation system. For example, snow removal 
operations by one jurisdiction can influence when a road is open, affecting when a connecting 
road in another jurisdiction can open.  

The integrity and operation of the transportation network in the NCAP landscape are affected by 
stream channel migration and scour, landslides, and debris flows, which make it difficult to 
maintain fixed crossing structures and operational travel routes near streams. Projected increases 
in peak streamflows elevate flood risk, and sediment transport increase risks to structures, roads, 
and trails (MacArthur et al. 2012). Individual intense storms during any season can overwhelm 
the water-holding capacity of soil and concentrate high velocity flows into channels that erode 
soils, remove vegetation, and initiate debris flows, which may be particularly pronounced below 
receding glaciers (Pelto and Riedel 2001; Huggel 2009). During floods, roads and trails can 
become preferential flow paths for floodwaters. Landslide impacts to infrastructure may expand 
due to projected changes in soil moisture and precipitation form and intensity, particularly in 
autumn and winter. Landslide hazard may also increase with tree mortality caused by fire and 
insect outbreaks because tree mortality reduces root adhesion with soil and decreases 
interception and evapotranspiration, further increasing soil moisture (Schmidt et al. 2001; Neary 
et al. 2005; Martin 2006).  

Climate change effects on access may create public safety concerns. A longer snow-free season 
may extend visitor use in early spring and late autumn at higher elevations (Suffling and Scott 
2002; Albano et al. 2013). Earlier snowmelt may reduce snow-related closures for a greater 
portion of the year and allow visitors to reach trails and camps earlier in the spring. Trailheads, 
which start at lower elevations, may be snow-free earlier, but hazards associated with melting 
snow bridges, avalanche chutes, and frozen snowfields may persist at higher elevations. In 
addition, greater variability in cool-season precipitation and increased flooding (Hamlet and 
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Fig. 2.4 Kilometers of roads and trails in each hydrologic basin type within the two national parks (a) and 
two national forests (b) across the NCAP landscape during three time periods: historic, 2040s, and 2080s  

Lettenmaier 2007) may expose early-season visitors to more intense hydrologic or weather 
extremes than they have historically encountered (Scott et al. 2007). Higher precipitation 
intensity could decrease driver safety (Hambly et al. 2013) and higher flood hazard in autumn 
could make river recreation more perilous. Amplified fire regimes driven by climate change 
(Rogers et al. 2011) emphasize the value of access for fire management, but could also reduce 
safe operation of some roads and require additional emergency response to protect recreationists 
and communities. Earlier access to roads and trails may also increase the need for extended 
seasonal maintenance and construction activities (Mills et al. 2009).  
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2.3.2  Adaptation  
2.3.2.1  Adapting to changing flood hazard and extreme flows  
Workshop participants identified adjustments to operations, designs, management, and planning 
that may increase resistance and resilience to changing high flows and flood hazards. One “no 
regrets” strategy is to continue to upgrade the aging system of roads and stream crossings as 
required by the Northwest Forest Plan and the 2005 Travel Management Rule (36 CFR part 212). 
These upgrades are intended to increase the resistance of roads at stream crossings to higher peak 
flows and flood frequency, and can enable adaptation if climate change is considered in design 
(Halofsky et al. 2011; Littell et al. 2012). Currently some culverts on fish-bearing streams are 
being replaced with culverts designed for aquatic organism passage, following the U.S. Forest 
Service Stream Simulation design standards and requirements of the Endangered Species Act. 
This design often results in higher culvert flow and debris capacity and provides a resistance 
strategy for higher peak flows. Given projected changes in basin types and Q100, engineers may 
consider upgrades of culverts and bridges in areas with projected greater hydrologic change (e.g., 
in mixed-rain-and-snow basins) (Meyer 2008; Halofsky et al. 2011). They could also use 
projections of future Q100 as future flood hazard (Fig. 3) to design replacements or to identify 
areas for enhancing culvert and bridge capacity projects (Halofsky et al. 2011; Tohver et al. 
2014).  

Another “no regrets” tactic is to expand current efforts to inventory roads, culverts, and stream 
crossings as part of a sustainable roads analysis. These inventories provide critical information 
for identifying future repairs, replacements, and upgrades, increasing the capacity of the 
transportation system to adapt to changing hydrologic regimes. Areas where damage is most 
likely to escalate can be identified by combining information on where roads currently 
experience frequent flood damage with spatial data on infrastructure condition and projected 
changes in flood hazard.  

Funding limitations were identified as a key barrier to climate adaptation because they often 
hinder efforts to upgrade the transportation system (Eisenack and Stecker 2012). Extreme floods 
that damage roads and culverts were identified as opportunities to replace existing structures 
with ones that are more resistant to higher peak flows. However, these replacements, called 
“betterments,” can be difficult to fund under eligibility requirements for the Emergency Relief 
for Federally Owned Roads (ERFO) program because the default policy proscribes “in-kind” 
replacement with the same infrastructure that was in place at the time of damaged. Sufficient 
justification for betterments based on climate change impacts could provide new avenues to 
increase resistance and resilience of repaired and replaced infrastructure (Tohver et al. 2014).  

Response strategies to address projected changes in high flows include: rerouting roads and trails 
farther from streams and rivers, relocating transportation routes to locations that do not require 
culverts or bridges, and decommissioning highly vulnerable roads or trails. The USFS has a large 
inventory of logging roads no longer used in forest management. In some cases, the current road 
system may provide multiple routes to specific destinations, and climate vulnerability 
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Fig. 2.5 Percentage change in total soil moisture content on December 1 within the NCAP landscape for 
2040s (2030–2059), compared with historical levels (1916–2006), calculated as [(future–
historical)/historical]*100 (a). Average change in date at which 90 % of SWE is melted from historical 
date (upper panel) and the 2040s date compared to historical dates (bottom panels) (b). Future projections 
modeled using A1B emission scenario and three model configurations, an ensemble of 10 GCMs and two 
individual GCMs projecting less warming and drier conditions (PCM1) and more warming and wetter 
conditions (MIROC 3.2) than ensemble mean. Gray lines show roads and trails.  
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assessments can be used to identify which roads to maintain and which roads to close (Meyer 
2008). However, the lack of redundancy in roads and trails in national parks will likely focus 
adaptation efforts on increasing resilience or resistance of the existing infrastructure, such as 
change in use or modes of transportation from car to bike or foot. Changes to the road and trail 
system are often opposed by a public accustomed to access for recreation. Working with local 
communities and recreational user groups, land managers can convert roads from vehicle to non-
vehicular use, which can reduce maintenance costs and risks to aquatic habitat. Greater public 
involvement can generate political support and possibly funding from external sources to 
maintain access (Irvin and Stansbury 2004). Incorporating decision “triggers” as an adaptation 
measure in long-term plans (e.g., closure of a road if it is damaged by flooding) can enhance the 
capacity to respond to climate change impacts with well-defined actions already vetted through 
public review (Eisenack and Stecker 2012).  

2.3.2.2  Adapting to increasing soil moisture and landslide hazard  
Road and trail management may need to be modified to reduce adverse impacts and maintenance 
costs associated with higher soil moisture. Increased soil saturation could create more boggy 
areas around roads and trails and associated erosion and damage to infrastructure. Recreation 
managers may consider locations with projected increases in winter soil moisture in their 
maintenance prioritization process (Fig. 2.5a). Short-term “no regrets” adaptation tactics for 
trails include improving drainage, stabilizing slopes, and restoring vegetation cover. More repairs 
and reroutes may be necessary to avoid damage to vegetation when users stray from established 
trails to avoid saturated soils and inundated sections. Short-term adaptation tactics for roads 
include reducing weight on the road, altering road surface type, drainage improvements, and 
planning for higher maintenance costs. However, repeated landslides and slope failures may 
require that vulnerable roads and trails be closed and that new construction avoid areas with 
elevated hazard.  

Climate change may necessitate greater emphasis on hydrologic impacts in road and trail design. 
Roads and trails constructed perpendicular to the slope can intercept, block, restrict, and channel 
water, which can exacerbate landslide hazards projected due to increasing soil moisture. Road 
and trail resilience can be increased by constructing improved drainage and enhanced erosion 
control. Monitoring erosion and saturated soils near roads and trails will be important for identify 
deterioration and prioritize locations for restoration and repair. Monitoring may be more 
effective if it focuses on infrastructure in areas with the highest projected increases in soil 
moisture (Fig. 2.5) and in mixed-rain-and-snow basins (Fig. 2.2), where the largest shifts in 
precipitation type are expected.  

2.3.2.3  Adapting to changes in snowpack and visitor use patterns  
Reduced snowpack and earlier snowmelt could allow earlier access for visitors to higher 
elevations and a longer “summer” recreation season (Michalak et al. 2013). However, an 
expanded visitor season would increase the cost of operating facilities (e.g., visitor centers and 
campgrounds) and require modifications to recreation management (Albano et al. 2013). Due to 
budget constraints, NPS and USFS managers are challenged to maintain visitor facilities and 
access. Therefore, longer snow-free seasons may not necessarily result in longer visitor access 
because agencies may lack capacity to open transportation routes earlier in the spring. 
Additionally, risks to public safety could increase with more frequent disruptions to access from 
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flooding and landslides. A long-term adaptation strategy would be to increase funding to allow 
for greater maintenance and an expanded visitor season. Public safety may be improved through 
regulation of seasonal use, combined with better information about current conditions and 
weather forecasts, especially in early spring and late autumn, before and after maintenance 
activities. Partnerships with recreational user groups may generate opportunities to communicate 
this message to the public, thus enhancing awareness of safety issues. Monitor changes in the 
timing, location, and number of visitors can provide data on where management policies could 
be modified.  

2.4  Summary and Discussion  
Historical development of roads and trails and regional climate exert strong controls on current 
patterns of access in the north-central Cascade Range of Washington, U.S.A. Climate change is 
expected to result in important changes in access via impacts to flooding, landslide hazard, and 
seasonal snowcover. The NCAP science- management collaboration evaluated the vulnerability 
of access to climate change and identified adaptation options applicable throughout the 
contiguous lands of two national forests and two national parks where altered weather patterns 
are already affecting the transportation network (Maurer et al. 2011; MacArthur et al. 2012). 
Hydrologic models project continued and escalating exposure to climate-induced changes in 
access due to shifting hydrologic regimes (Tohver et al. 2014; Salathé et al. 2014).  

In the short term, natural climatic variability may exacerbate, compensate for, or even 
temporarily reverse expected trends in some hydroclimatic processes. However, in the long term 
(40–100 years; Meyer 2008), the cumulative impacts of climate change are expected to become 
the dominant factor, particularly for temperature-related effects (Mote et al. 2008). In response to 
these challenges, the NCAP identified adaptation strategies and tactics to enhance the resistance, 
resilience, and response of the transportation system. The federal lands context of this 
assessment provides opportunities to implement adaptation over a large geographic area, such as 
design standards, operations, and planning with consideration of a dynamic climate. 
Incorporating adaptation into long-term planning is an important element of climate change 
planning (NRC 2008; Whitely Binder et al. 2010; Hamlet 2010) and an adaptive management 
system can allow decisions regarding repairs, restoration, and closures to evolve as hydrologic 
regimes evolve. The vulnerability assessment and adaptation planning described here focuses on 
transportation systems on federal lands, providing an approach that can be applied to other 
resource sectors and mountainous regions. The results are particularly relevant to areas where 
snowpack is a key hydrologic component and infrastructure is in close proximity with streams.  
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Abstract 
We develop a hydro-climatological approach to modeling of regional shallow landslide initiation 
that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual 
probability of landslide initiation.  The physically-based model couples the infinite slope stability 
model with a steady-state subsurface flow representation and operates on a digital elevation 
model. Spatially distributed raster data for soil properties and a soil evolution model and 
vegetation classification from National Land Cover Data are used to derive parameters for 
probability distributions to represent input uncertainty. Hydrologic forcing to the model is 
through annual maximum recharge to subsurface flow obtained from a macroscale hydrologic 
model, routed on raster grid to develop subsurface flow. A Monte Carlo approach is used to 
generate model parameters at each grid cell and calculate probability of shallow landsliding. We 
demonstrate the model in a steep mountainous region in northern Washington, U.S.A., using 30-
m grid resolution over 2,700 km2. The influence of soil depth on the probability of landslide 
initiation is investigated through comparisons among model output produced using three 
different soil depth scenarios reflecting uncertainty of soil depth and its potential long-term 
variability. We found elevation dependent patterns in probability of landslide initiation that 
showed the stabilizing effects of forests in low elevations, an increased landslide probability with 
forest decline at mid elevations (1,400 to 2,400 m), and soil limitation and steep topographic 
controls at high alpine elevations and post-glacial landscapes. These dominant controls manifest 
in a bimodal distribution of spatial annual landslide probability.  Model testing with limited 
observations revealed similar model confidence for the three hazard maps, suggesting suitable 
use as relative hazard products. Validation of the model with observed landslides is hindered by 
the completeness and accuracy of the inventory, estimation of source areas, and unmapped 
landslides. The model is available as a component in Landlab, an open-source, Python-based 
landscape earth systems modeling environment, and is designed to be easily reproduced utilizing 
HydroShare cyberinfrastructure.  
3.1  Introduction 
In steep mountainous landscapes, episodic shallow landslides (generally <2 m depth; Bordoni et 
al, 2015) and landslide-triggered debris flows are often the dominant form of hillside erosion and 
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major source of sediment into streams (Benda and Dunne, 1997a, b; Goode et al., 2012). Where 
landslide processes intersect with human development, they cause property damage, disruption 
of infrastructure, injury, and loss of life (Taylor and Brabb, 1986; Baum et al., 2008a), contribute 
to sedimentation in reservoirs (Bathurst et al., 2005), and may even lead to dam failures 
(Ghirotti, 2012). Landslides provide punctuated sediment input to streams, affecting stream 
geomorphology (Benda and Dunne, 1997a, 1997b) and ecosystem dynamics (Pollock, 1998; 
May et al., 2009).  Landslide hazard maps are common tools used to characterize the relative 
potential for landslide occurrence in space, either qualitatively (using susceptibility levels) or 
quantitatively (using modeled landslide probabilities) (van Westen et al., 2006; Raia et al., 2014).  
 
Our objective is to develop a parsimonious probabilistic model of shallow landslide initiation 
that can be implemented with minimal calibration for landslide hazard mapping using regionally 
available, spatially distributed input data for soil, vegetation type, local topography, and 
hydroclimatology. Based on the literature review presented below, we propose that a regional 
landslide hazard model should: (1) be flexible enough to incorporate changes in intrinsic and 
extrinsic conditions, such as vegetation and climate; (2) account for spatial variability in model 
parameters and forcings, and (3) integrate spatial and temporal dimensions of uncertainty to 
quantify landslide probability.  With these principles in mind, we develop a hydro-climatological 
approach to modeling regional landslide hazard using the Landlab (version 1.1.0) modeling 
toolkit - an open-source, Python-based earth surface modeling framework that provides flexible 
model customization and coupling (Hobley et al., 2017).  Next, we provide a short literature 
review that guides the design of our landslide modeling approach. 
 
3.1.1  Geomorphology and Modeling Background 
Landslides occur when destabilizing forces due to gravity and pore-water pressure exceed the 
resisting forces of friction and cohesion over a failure plane. These forces are controlled by 
intrinsic hillslope conditions, including attributes of topography, such as local slope and upslope 
contributing area, and properties of rock, soil, and vegetation root cohesion; and extrinsic drivers 
of rainfall, snowmelt, and earthquakes (Crozier, 1986; Wu and Sidle, 1995; van Beek, 2002; 
Naudet et al., 2008). There are three primary components of a landslide: (1) a source area or 
landslide scar where the initial failure begins, (2) a transmission or scour zone, such as a debris 
flow channel, and (3) a toe or zone of deposition (Lu and Godt, 2013).   
 
Landslide susceptibility can be identified through numerous methods, which can be broadly 
grouped into empirical methods and process-based numerical models (Hammond et al., 1992; 
Wu and Sidle, 1995; Sidle and Ochiai, 2006).  Data-driven empirical approaches relate the 
number and frequency of historical landslide observations in a region to triggering events (Caine, 
1980; Crozier, 1999; Glade, 2001), landscape attributes (Carrara et al., 1995; Chung et al., 1995; 
Lee et al., 2007), or a combination of both (Kirschbaum et al., 2012) using threshold relations 
and various statistical models such as logistic regression, fuzzy logic, artificial neural networks, 
and support vector machine (Lee et al., 2007; Pardeshi et al., 2013; Chen et al., 2014).  Empirical 
methods have been used for landslide susceptibility zonation or categorizing the landscape into 
relative landslide hazards (Sidle and Ochiai 2006).   
 
Process-based models employ effective stress principles to characterize the destabilizing and 
resisting forces under hydrologic drivers (Iverson, 2000; Montrasio and Valentino 2016), 
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offering the ability to explore changes in environmental and climatic conditions. Such process-
based models are especially useful in areas with limited landslide inventories (Pardeshi et al. 
2013). Recent process-based numerical models have largely focused on improving the 
characterization of the space-time dynamics of subsurface flow as a driver of pore-water pressure 
(e.g., Baum et al., 2008b; Raia et al., 2014; Anagnostopoulos et al., 2015; Montrasio and 
Valentino, 2016). Distributed hydrology models that use steady-state or transient solutions for 
subsurface flow depth were coupled with an infinite-slope stability model that solves the ratio of 
stabilizing to destabilizing forces on a failure plane parallel to the land surface (Montgomery and 
Dietrich, 1994; Miller, 1995; Wu and Sidle, 1995; Pack et al., 1998; Borga et al., 1998; Casadei 
et al., 2003; Tarolli and Tarboton, 2006; Baum et al., 2008b).   
 
Steady-state models assume that lateral subsurface flow, driven by the topographic gradient, at 
each point on the landscape is in equilibrium with a steady-state recharge rate (Montgomery and 
Dietrich, 1994; Pack et al., 1998).  The degree of soil saturation is predicted proportional to the 
ratio of upslope contributing area to local slope, and a ratio of watershed recharge and local soil 
transmissivity, following TOPMODEL assumptions (Beven and Kirkby, 1979; O’Loughlin, 
1986; Pack et al., 1998). More recent efforts have focused on the development of transient flow 
models in various complexities by coupling vertical infiltration and redistribution processes in 
the unsaturated zone, using the Richards equation for unsaturated flow (Richards, 1931) or its 
variants, with lateral flow parameterizations such as kinematic wave in 1- and 2-dimensions 
(Iverson, 2000; Casadei et al., 2003; Baum et al., 2008b; Godt and McKenna, 2008; Raia et al., 
2014; Alvioli et al., 2014; Anagnostopoulos et al., 2015).   
 
While transient flow models have contributed to improved understanding of the influence of 
weather forcing and temporal variability in precipitation on landslide initiation, they remain tools 
typically applied for relatively small-scale assessments (Iverson, 2000; Raia et al. 2014).  
Transient models require a large number of hydrologic soil and vegetation parameters that are 
highly variable, uncertain, and difficult to measure or estimate (Godt and McKenna 2008; Baum 
et al. 2008b). In addition, in most steep forested mountains where landslide risk is high, presence 
of macropores due to connected root structures, biological activity, fractures, large clasts, and 
lenses, leads to preferential and funneled flows that violate the assumptions of most matrix-flow 
models (Nimmo, 2005; Sidle et al., 2001; Gabet et al., 2003; Beven and Germann 2013). 
Numerical solutions to flow equations also present a major computational bottleneck in large-
scale applications for probabilistic quantification of landslide hazard.   
 
Comparison of steady-state and transient models using case studies with known extreme rainfall 
events that caused widespread landsliding involve statistical model performance evaluation 
(Zizioli et al., 2013).  While using transient hydrologic models provided slight improvements in 
the prediction of landslide locations, overall, statistical comparisons of model outputs between 
steady-state and transient models revealed fairly similar degrees of success (Gorsevski et al., 
2006; Zizioli et al., 2013; Anagnostopoulos et al., 2015; Boroni et al., 2015; Formetta et al., 
2016). In some applications, model complexity increased the accuracy of predicted landslide 
locations at the expense of overestimating instability on unsaturated hillslopes (e.g., Godt et al., 
2008; Bellugi 2011).  In other cases, model precision increased while accuracy decreased 
(Gorsevski et al., 2006).   
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Data uncertainty due to spatial and temporal variability of parameters continues to be one of the 
major challenges in predicting landslides over broad regions (Crozier, 1986; Sidle and Ochiai, 
2006; van Westen et. al., 2006; Baum et al., 2014; Anagnostopoulos et al., 2015). These 
uncertainties and variabilities can develop from geological anomalies, inherent spatial 
heterogeneities in soil and vegetation properties and their changes over time, and sampling 
limitations (El-Ramly et al., 2002; Cho, 2007; Baum et al., 2014).  Uncertainties in hydro-
climate quantities, such as precipitation and recharge, are particularly pronounced in steep high 
mountain regions due to lack of observations and complex spatial and temporal atmospheric 
processes (Roe, 2005; Wayland et al., 2016). Designating landslide hazard as a probability, 
rather than an index, systematically accounts for uncertainty and variability in stability analysis 
(Hammond et al., 1992) and more appropriately represents complex systems (Berti et al., 2012).  
Currently, only limited process-based models account for data uncertainty in landslide hazard 
mapping (e.g., Pack et al., 1998; Raia et al.,2014).  
 
Observations and model experiments suggest that the largest landslides are usually associated 
with the largest rainfall events (e.g., Page et al. 1994; Gorsevski et al., 2006). Considering that 
hillslope hydrology is more likely to attain equilibrium conditions during prolonged wet 
conditions (e.g., Barling et al., 1994; Borga et al., 2002), a steady-state representation of 
subsurface flow hydrology, coupled with a process-based infinite slope stability model is an 
efficient approach for predicting the likelihood of landslide hazard at regional scales.  
 
Lastly, most landslide hazard methods disregard a temporal dimension over which landslide 
probability is defined (Wu and Sidle, 1995; van Westen et al, 2006). As a result of that, instead 
of using estimated probabilities directly in the form of return periods of observed landslides or 
expected values for risks resulting from landslides, models use probability estimates as relative 
indices (e.g., Pack et al., 1998) that can be used for hazard zonation (Pardeshi et al., 2013).  Lack 
of temporal dimension limits the incorporation of model results into risks assessments and the 
decision-making processes in high-risk regions.  
 
3.1.2  Approach Overview 
We develop a process-based modeling approach for shallow landslide initiation that incorporates 
imprecisions and uncertainties in hydro-climatological forcing, soils, and land cover properties.  
Rather than predicting critical rainfall intensity necessary to destabilize hillslopes (Montgomery 
and Dietrich 1994) or a terrain stability index map (Pack et al. 2001, 2005), our approach aims to 
develop a spatially continuous probability of landslide initiation that can be updated as 
conditions and triggers evolve.  The model evaluates the infinite slope stability equation at the 
scale of a grid cell from a Digital Elevation Model (DEM). Daily rate of recharge (i.e., flux of 
water entering saturated zone) can be provided by model users from a variety of grid resolutions 
from hydrologic models such as the Variable Infiltration Capacity (VIC) model (Liang et al. 
1994) as used in our regional application, or assigned as parameters by the user. A “Source 
Tracking Algorithm” (STA) is developed to route spatially variable recharge fields, at the native 
resolution of a hydrology model, generically referred to as a Hydrology Source Domain (HSD), 
onto the grid resolution of slope stability calculations. Raster grids derived from soil texture and 
vegetation cover classes are used with look-up tables to estimate model parameters ranges 
obtained from the literature to quantify uncertainty. Through Monte Carlo simulation (Raia et al., 
2014), we calculate the probability of landslide initiation at each landscape grid cell.  Our 
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probability is further refined by a geomorphic soil evolution model that estimates soil depth with 
greater spatial heterogeneity than conventional soil survey map units, which is critical for slope 
stability analysis (Dietrich et al., 1995).  This soil evolution model estimates long-term soil depth 
based primarily on soil mass production and slope-dependent sediment transport rules. 
 
Landslide probability calculations are written in Python as a Landlab LandslideProbability 
component (landlab.github.io, including User Manual).  The STA is available as a Landlab 
utility. The landslide model is designed as a user-written “driver” within Jupyter Notebooks, 
where the workflow of model application is presented. The driver and data are deployed on 
HydroShare (www.hydroshare.org), an online collaboration environment for sharing data, 
models, and code (Horsburgh et al., 2016; Idaszak et al., 2016), and made available for cloud 
computing via HydroShare JupyterHub infrastructure using a web browser (see Sect. 3.2.5).   
 
In this work we explore the questions (1) How does regional hydro-climatology influence the 
spatial patterns of shallow landslide initiation over large geographic scales? and (2) How does 
distributed soil depth influence the probabilistic nature of landslide initiation compared to 
coarse-scale, homogenous soil depth estimates? We demonstrate our approach in a mountainous 
region of Washington, USA. This Pacific Northwest (PNW) region is naturally susceptible to 
landslides because of high and intense rainfall, steep mountains, active tectonics, and geologic 
and glacial history (Nadim et al., 2006; Sidle and Ochiai, 2006).  The Oso landslide, which 
occurred in the vicinity of our study area in 2014, resulting in 43 fatalities and over $50 million 
in economic losses, provides a solemn reminder of the hazard landslides present (Wartman et al., 
2016).  Although the Oso landslide was a deep-seated type, the greater frequency of shallow 
landslides affords utility and relevance to our model. 

3.2  Methodology 
3.2.1  Probabilistic approach to landslide initiation 
Our approach is based on the infinite slope stability equation derived from the Mohr-Coulomb 
failure law that predicts the factor-of-safety (FS) stability index of a hillslope parcel from the 
ratio of stabilizing forces of soil cohesion and friction, reduced by pore-water pressure of 
subsurface flow, to destabilizing forces of gravity (Hammond et al., 1992; Wu and Sidle, 1995). 
The model as given by Pack et al. (1998) is: 

                  𝐹𝑆 = 	  
(𝐶𝑟+	  𝐶𝑆)/ℎ𝑠𝜌𝑠𝑔

sin𝜃 +	  cos𝜃 tan𝜙(1−𝑅𝑤	  𝜌𝑤/𝜌𝑠)sin𝜃  (1a) 

𝐶 ∗	  = 	   (𝐶= + 𝐶>)/ℎ>𝜌>𝑔 (1b) 

C* is a dimensionless cohesion (Eq. 1b) embodying the relative contribution of cohesive forces 
to slope stability. When C*>1, cohesion is sufficient to hold the soil slab vertically (Pack et al., 
1998). Cr and Cs are root and soil cohesion respectively [Pa], hs is the soil depth perpendicular 
to slope [m], rs and rw are saturated soil bulk density and water density [kg/m3], respectively, g 
is acceleration due to gravity [m/s2], q is slope angle of the ground, and ø is soil internal friction 
angle [°]. Relative wetness, Rw, is defined as the ratio of subsurface flow depth, hw, flowing 
parallel to the soil surface, to hs. Deterministically, a hillslope element is unstable if FS < 1 and 
stable if FS > 1 (Sidle and Ochiai, 2006; Shelby, 1993). When FS = 1, the slope is “just-stable” 
or in a state of “limited equilibrium” (Lu and Godt, 2013).  
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Relative wetness is arguably the most dynamic factor at short time scales, relating to water table 
depth and to recharge rate.  It is derived from local subsurface lateral flow, qs [m2 d-1], 
represented by a 1-D (i.e., flow parallel to bedrock) form of the kinematic wave approximated by 
Darcy’s law using topographic gradient of hillslope, qs=Kshwsinq  (Wu and Sidle, 1995).  Under 
a steady-state assumption, lateral flow is in balance with the rate of water input, qr [m2 d-1], 
through a uniform rate of recharge, R [m d-1], across the upslope specific contributing area, a 
[m], qr=Ra. This assumption gives: Ra=Kshwsinq, where Ks is saturated hydraulic conductivity 
[m d-1]. Solving this equation for hw and dividing both sides by hs gives Rw (Montgomery and 
Dietrich, 1994; Pack et al., 1998): 

𝑅? = 	  
ℎ𝑤
ℎ𝑠
= min	   𝑅	  𝑎

𝑇	   sin 𝜃 , 1      (2) 

Here T is soil transmissivity [m2 d-1], which is depth-integrated saturated hydraulic conductivity, 
Ks. For uniform Ks within the soil profile, T=Kshs. Ground saturates when Rw = 1, which 
represents hydrostatic conditions and the maximum value for Rw. Options for user-provided T or 
Ks are accepted by the component; although comparison of resulting probabilities were found to 
be similar given that the value of T was derived from hs. We assume uniform conductivity within 
the soil profile overlying a relatively impermeable layer such as bedrock, and subsurface flow 
direction parallel to this drainage barrier (Montgomery and Dietrich, 1994).  These assumptions 
are appropriate for relatively steep topography and to efficiently characterize wetness over large 
areas (Tarolli and Tarboton, 2006; van Westen et. al., 2006).   
 
A Monte Carlo simulation is used with equation (1) by assuming R, T, C (C=Cr+Cs), hs and ø as 
random variables represented by probability distributions (Tobutt, 1982; Hammond et al., 1992). 
One benefit of Monte Carlo simulation is that many of the sources of inaccuracy (e.g., 
nonlinearity, input uncertainties) are overcome (Strenk, 2010; El-Ramly et al., 2002) by 
generating a distribution of samples over a plausible range for selected variables.  The 
uncertainty in R is defined by using a time series of the maximum daily recharge in each year 
(e.g., Benda and Dunne, 1997a; Borga et al., 2002; Istanbulluoglu et al., 2004). The model 
includes both spatially uniform and spatially distributed options for sampling recharge (described 
further in Sect. 3.2.3).  Using sampled random variables in Eq. (1a), FS is calculated in each 
model iteration during the simulation. Annual probability of failure P(F) and landslide return 
period (RP) at each grid cell are defined as (Hammond et al., 1992; Cullen and Frey, 1999):  

𝑃 𝐹 = 	  𝑃 𝐹𝑆	   ≤ 1 = 	  𝑛(𝐹𝑆 ≤ 1)/𝑛 (3a) 
𝑅𝑃 = 𝑃(𝐹)GH (3b) 

Our model does not predict the size of a probable landslide at the initiation point, which can be 
smaller or larger than the size of a DEM grid. P(F) gives a relative propensity that a landslide 
could initiate within the grid cell.  The design of the model reflects the uncertainty of soil and 
vegetation within a grid cell.  Therefore, if some random samples lead to a low deterministic FS, 
they contribute to an increase of the P(F) within that cell. 
 
3.2.2  Model Development in Landlab 
The landslide modeling approach presented above is implemented in Landlab (landlab.github.io). 
Landlab is an open-source modeling toolkit written in Python for building and running two-
dimensional numerical models of Earth-surface dynamics (Tucker et al., 2016; Hobley et al., 
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2017; Adams et al., 2017). A detailed explanation of the Landlab framework is provided in 
Hobley et al. (2017). Landlab provides a grid architecture, a suite of pre-built components for 
modeling surface or near-surface processes, and utilities that handle data creation, management, 
and interoperability among process components. The Landlab design allows for a “plug-and-
play” style of model development, where process “components” can be coupled together in a 
user-customized “model driver”.  Each component is a set of code functions that represent an 
individual process; the model driver has code used to import or generate required data, execute 
the component or set of components used in the model, and to visualize results.  For example, 
once a DEM is imported as a Landlab grid instance, any Landlab component can be used with 
interoperable methods to attach data and perform operations. Landlab code developed for this 
work is explained in detail in the user manual of the Landlab LandslideProbability component 
available from eSurf and the Landlab github website. 
 
The Landlab workflow developed in this regional landslide probability mapping study uses the 
LandslideProbability component presented in Fig. 3.1.  The workflow includes preparing spatial 
model parameters and model forcing data completed in preprocessing steps outside of Landlab. 
A model driver is written to run the LandslideProbability component on RasterModelGrid 
(RMG) instance only. RMG is a Landlab class for creating raster grids and representing the 
connections among grid elements. A structured grid is generated that covers the model domain. 
Spatial model parameters and forcing variables supplied by the user are stored on the grid 
elements as Landlab data fields, which are NumPy arrays containing data associated with grid 
elements (in this case nodes).  The driver imports Landlab and necessary Python libraries as well 
as loads and processes data required for the LandslideProbability component. 

 
Figure 3.1.  Workflow for landslide modeling using the Landlab LandslideProbability component.  The 
user creates input parameter fields (purple box).  The model driver (gray) imports Landlab, Python 
libraries, and model parameters fields: instantiates (e.g., create an instance) the RasterModelGrid and the 
component; and runs utilities and methods of Landlab (blue inside dashed box).   



www.manaraa.com

 29 

Slope angle and specific contributing area are static parameters derived from a DEM in pre-
processing steps. Total cohesion, C (i.e., Cr+Cs), ø, hs, and T are treated as random variables 
following a triangular distribution specified with three parameters (minimum, mode, and 
maximum) to represent spatial and temporal uncertainties in these parameters on the landscape 
(Cho, 2007; Dou et al., 2014). Triangular distributions give weight to the most likely value (i.e., 
mode) and have been proposed in other Monte Carlo simulations of slope stability (Hammond et 
al., 1992; El-Ramly et al., 2002; Strenk, 2010). Parameters of the triangular distribution can be 
assigned by relating categorical vegetation cover variables, for example from the National Land 
Cover Data (NLCD) (Jin, 2013; USGS, 2014b) or other map sources, with a lookup table for 
cohesion and using available soils data such as gridded Soil Survey Geographic Database 
(SSURGO) (DOA-NRCS 2016), to assign internal friction angle, soil depth, and transmissivity 
(see 3.3 for details). Soil density is set as a constant field, 2,000 kg m-3 in our application. 
 
In each Monte Carlo iteration, we characterize recharge as an annual maximum daily recharge 
event. Four options for sampling recharge are provided, which are identified in the model driver 
by selecting a probability distribution: uniform, lognormal, lognormal_spatial, and 
data_driven_spatial. The first two assign spatially uniform random variables with respective 
parameters of minimum and maximum, and mean and standard deviation. The latter two are 
designed to represent spatial variability in recharge based on historical annual maximum daily 
recharge routed to each node of the model domain. The lognormal_spatial option assigns mean 
and standard deviation of annual maximum recharge and uses lognormal distribution of recharge 
for simulation. The data_driven_spatial option uses a non-parametric Monte Carlo sampling 
approach to sample directly from historical recharge data. Upslope-averaged recharge for each 
grid node is calculated with the Landlab Source Tracking Algorithm (STA) utility using recharge 
from a HSD, which in this study is the VIC macroscale (1/16° or 5x6 km grid cell) hydrology 
model. 
 
Within the model driver, the user also sets any boundary conditions, such as areas to exclude 
(i.e., bedrock outcrops, glaciers) and assigning the number of Monte Carlo iterations (n>>1,000, 
Hammond et al., 1992).  The LandslideProbability component is instantiated by passing four 
arguments: the grid, number of iterations, recharge distribution, and recharge parameters.  
Multiple instances of the LandslideProbability class can be established in one driver to compare 
the results from different recharge specifications.  Once the component has been instantiated, the 
component’s method calculate_landslide_probability() is run.  For each iteration, this method 
loops through each core node, generates unique model parameters, and calculates the relative 
wetness (Eq. 2) and deterministic FS index (Eq. 1a) at each iteration. At the end of the iterations, 
the P(F) at the node is calculated as the number of iterations in which FS≤1 divided by the 
number of iterations.  Variables output by the component at each core node include calculated 
probability of saturation and P(F), which can be queried at each node or visualized across the 
entire grid within the driver or using a command line terminal to execute commands. 
 
 
 
3.2.3  Hydrologic Data Processing 
A key aspect of the regional landslide modeling approach is the linking of landslide hazard to 
hydro-climatological forcing at regional scales. The Landlab LandslideProbabilty component is 
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written with the capability to accept input from hydrologic model outputs.  We used the VIC 
macroscale hydrologic model (Liang et al., 1994) to demonstrate this capability because it 
characterizes elevation-dependent differences in regional precipitation and temperature forcings 
and their influence on recharge through regulating snow accumulation and melt, rain-on-snow, 
evapotranspiration, and soil moisture.  VIC is semi-distributed, predominantly physics-based 
macro-scale hydrology model, which is advantageous for representing distributed parameters of 
hydro-climatology that are not stationary in time over large regional areas (Hamlet et al., 2013). 
 
The VIC model simulates the land surface as a large, flat, uniform grid with sub-grid 
heterogeneity (e.g., vegetation and elevation) based on statistical distributions.  Daily or sub-
daily meteorological drivers (e.g., temperature and precipitation) influence the fluxes of water 
and energy near the land surface.  Each grid is simulated independently and flows between grid 
cells are ignored (e.g., unrouted).  Precipitation enters the upper of typically three layers of soil 
and infiltrates to lower layers via a variable infiltration curve.  Soil water can move between 
layers vertically and is lost through evapotranspiration and from the third layer as 
base/subsurface flow via non-linear recession.  Water input in excess of infiltration forms surface 
runoff.  
 
To characterize the annual probability when the ground is likely to be the most saturated, daily 
baseflow and surface runoff are summed at each VIC grid cell to represent recharge [mm d-1] and 
the annual maximum daily value is selected for each model year, similar to others (e.g., Benda 
and Dunne, 1997a; Borga et al., 2002; Istanbulluoglu et al., 2004). The recharge data arrays are 
keyed to latitude, longitude, and grid cell ID (a user-defined ID for each VIC grid cell, in our 
case) packaged as Python dictionaries (see Fig 1. of User Manual).  To help account for lateral 
fluxes in groundwater (van Beek, 2002), VIC recharge is routed to each node in the model grid 
using the STA utility, which also addresses the different spatial resolutions of VIC and the RMG.  
This Landlab utility was developed to derive the fraction of annual maximum recharge from each 
VIC grid cell within the upslope contributing area of each Landlab grid node.  The fractions and 
VIC IDs are saved as values for two Python dictionaries keyed to the RMG node ID.  At each 
node, these dictionaries are used to calculate the upstream proportionally-averaged maximum 
recharge for each year. 
   
3.2.4 Soil Depth Evolution Model 
Soil depth controls the temporal and spatial patterns of landsliding over geomorphic time scales 
and is considered one of the most significant parameters controlling the FS stability index, 
especially at depths less than 1.5 m (Benda and Dunne, 1997a; Istanbulluoglu et al., 2004; Catani 
et al., 2010; Sidle and Ochiai, 2006).  Soil depth can vary in space and time as a function of 
weathering and sediment transport in relation to climate, lithology, topographic position, and 
vegetation cover (Dietrich et al., 1995). As an alternative to spatial soil maps such as the 
SSURGO database (DOA-NRCS 2016), which are often produced at the soil pedon-level, we 
developed a soil depth map using a simple soil evolution model and topographic and land cover 
attributes (Dietrich et al., 1995; Pelletier and Rasmussen, 2009; Tesfa et al., 2009; Bellugi et al., 
2015).    
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Change in soil depth depends on soil production by bedrock weathering and slope-dependent 
sediment transport expressed as (Nicótina et al., 2011; Tucker and Slingerland, 1997; Heimsath 
et al., 1997): 

𝜌>
IJK
IL
= 	  −𝜌=

IMN
IL
	  − 	  𝜌>∇𝑞> (4) 

where rs and rr are bulk densities for soil and rock, respectively, hs is soil depth, zb is the 
elevation of the soil-bedrock interface, t is time, ∇ is the topographic divergence operator for the 
topographic gradient, and qs is the sediment flux.  The soil production (e.g., first term in Eq. 4 on 
right side) is a function of the rate of change in the elevation of the soil-bedrock interface, which 
has been shown to decline exponentially with soil depth (Heimsath et al., 1997, Gabet et al., 
2003): 

IMN
IL
= 	  −𝑃𝑜𝑒−𝛼ℎ𝑠 (5) 

where Po is the soil production rate from exposed bedrock (i.e., no soil cover) and α is the rate of 
exponential decay with depth.  Diffusive sediment transport characterized in the second term on 
the right side of Eq. (4) can be represented by a simple soil creep function dominant in convex 
hillslopes as (Nicótina et al., 2011; Istanbulluoglu et al., 2004): 

∇𝑞> = 	  −𝐾U∇V𝑧 (6) 

where Kd is a linear hillslope diffusion coefficient and ∇2 is Laplacian of elevation.  Dividing 
Eq. (4) by rr, multiplying by the ratio of rr / rs , and substituting Eq. (5) and Eq. (6) into Eq. (4), 
yields the following instantaneous soil depth equation:    

IJK
IL
= 	   XY

XK
𝑃𝑜𝑒−𝛼ℎ𝑠 +	  𝐾U∇V𝑧 (7) 

The change in soil depth with time based on Eq. (7) is added to the soil depth at t-1 (t in years) to 
evolve soil depth over time (see also: Pelletier and Rasmussen 2009).   
 
Variable curvature profiles, steep and planar hillslopes, and abrupt knife edge drainage divides 
indicate nonlinear transport processes such as mass wasting (Roering et al., 2004, 1999).  These 
landscape characteristics are common in the steep terrain; therefore, in every iteration of the 
model, Eq. (1a) and Eq. (2) are used to calculate FS within the soil evolution model.  When 
FS≤1, soil is removed to bedrock by setting it to a very small value of 0.005 m to be consistent 
with the creep equation. In each model iteration, C and T, were randomly sampled and used 
deterministically in the FS Eq. (1a).  Calibration of the soil evolution model is done by adjusting 
Po and Kd for the location of the landslide analysis based on published long-term rates of erosion 
and diffusion.  Creation, calibration, and application of the soil evolution model are detailed in 
Sect. 3.4.1. 
 
3.2.5  Reproducibility  
To publish a reproducible version of this research, we used the HydroShare 
(www.hydroshare.org) cyberinfrastructure platform, which is designed explicitly to encourage 
the reusing and sharing of models (Tarboton et al., 2014; Horsburgh et al., 2016; Morsy et al., 
2017).  Steps that supported reproducibility included using the HydroShare sharing settings with 
a workflow that started with Private while data and models were developed, Discoverable while 
research was being shared with colleagues for review, and Public, once our results were accepted 
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for publication.  We used the Select a license function to add No Commercial (NC) use to our 
Creative Commons license.  We made use of the Groups social collaboration, by making early 
versions of our research results available to invited participants of workshops and tutorial 
demonstrations to our Landlab group in HydroShare. The data and model are accessed by 
launching Jupyter Notebooks that access Landlab installed on JupyterHub servers at the National 
Center for Supercomputing Applications (Yin et al, 2017; Castranova, 2017). HydroShare 
features enable our current and future researchers to use the Copy Resource function to replicate 
our published resource (i.e., the landslide model) in their own account with Derived from 
metadata that references back to the published resource DOI, to serve as a starting point for their 
work. 

3.3 Model application 
3.3.1 Study Area 
The model described above is applied within the geographical limits of the North Cascades 
National Park Complex (NOCA) in the state of Washington, U.S.A, managed by the U.S. 
National Park Service (Fig. 3.2).  In recent decades, NOCA has experienced damaging and 
disruptive landslides that have impacted infrastructure and the public.  Furthermore, the park 
area is covered by a recent soil survey between 2003 and 2009, including field investigation 
(DOA-NRCS and DOI-NPS, 2012), and has a complete map of mass wasting processes visually 
observed in the field (Riedel and Probala, 2005).  
 
NOCA is approximately 2,757 km2, with 93% wilderness (in which no motorized or mechanized 
devices are permitted; DOI-NPS, 2012), which is ideal for studying naturally triggered 
landslides.  The elevation ranges from about 100 m to 2,800 m (Fig. 3.2a). The terrain is 
composed of rock slopes at the highest elevations, short (<100 m) soil-mantled hillslopes, and 
landslides upslope of relatively straight debris flow channels connected to the fluvial system. 
Over 300 glaciers occupy mountain peaks in NOCA.  The influence of the Pacific Ocean, 
approximately 80 km to the west, provides a humid temperate climate.  However, the north-south 
oriented Cascade Mountains create an effective orographic climate boundary, separating a wetter 
west side from a drier east side.  Reported mean annual precipitation ranges from about 708 mm 
in the low elevations of the eastern slopes to 4,575 mm at the highest mountain elevations west 
of the Cascade crest, with about 70% falling in November through March (Fig. 3.2b). This 
spatial precipitation gradient is the result of orographically-enhanced precipitation that leads to a 
strong rain shadow (Roe 2005).  Average annual air temperatures range from -2 to 11°C, 
depending on elevation (DOA-NRCS and DOI-NPS, 2012).  
 
Vegetation is mainly coniferous trees, with deciduous trees along river floodplains, and shrubs, 
meadows, and barren land in the subalpine and alpine environments. In this study vegetation 
classes were grouped into herbaceous, shrubland, and forest using the 2014 NLCD data, which is 
based on the land use/land cover (LULC) classification of 2011 Landsat satellite imagery (Jin, 
2013; USGS, 2014b).  Based on this classification, forest, shrubs, and herbaceous vegetation 
represent 58%, 17%, and 12% of the park, respectively. Elevation ranges for these vegetation 
classes are from 106 to 2363 m (forest), 110 to 2465 m (shrubs), and 121 to 2759 m 
(herbaceous).   
 
The park geology is composed of a complex mosaic that includes mostly complexly faulted and 
folded sedimentary and volcanic rocks on the west side, unmetamorphosed sedimentary and 
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volcanic rock on the eastern edge, and highly squeezed and recrystallized metamorphic rock 
originating from great depth in middle (Haugerud and Tabor, 2009).  Alpine and continental 
glaciation, along with rivers and mass-wasting processes, have created the landscape we observe 
today. The glaciers eroded U-shaped valleys with steep valley walls prone to landslides and flat 
valley floors with gravel-bed rivers. The lower ends of many valleys on the east side were not 
covered in alpine glaciers and have narrow, winding V-shaped canyons and steep, narrow rivers. 
 
A park-wide landform mapping study identified six different types of mass wasting: rock 
fall/topple, debris avalanche, debris torrent, slump/creep, sackung, and snow avalanche-impacted 
landforms (Riedel et al., 2015). Mass wasting landforms were identified in the landform mapping 
using 1998 air photos at 1:12,000 scale, 7.5 minute topographic maps, bedrock geology maps, 
and field investigations.  The minimum mapping unit was approximately 1,000 m2, except for a 
few smaller slump units. In this study, we only used mapped debris avalanches for model 
confirmation as they often initiate by shallow landslide processes. Debris avalanches typically 
represent a mixture of failed rock and debris and the mapped polygon included head scar, 
transport and scour channels, and deposition zone represented in a single polygon (Fig 3.3a).  We 
extract the highest 10% of the elevations in the mapped debris avalanche polygons as landslide 
source areas through comparison to aerial imagery (Tarolli and Tarboton, 2006). Landslide 
sources are more frequent in the intermediate elevations. In the NOCA region, 75% of landslide 
source areas are located in the 1,200 m to 2,000 m elevation range (Fig. 3.3b). 
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Figure 3.2. North Cascades National Park Complex (NOCA) in northern Washington state, U.S.A:  
(a) a 30-m DEM of the domain overlain by debris avalanches and major water bodies; (b) slope derived 
from DEM; and (c) mean annual precipitation (1981-2010 average) mapped at 800-m resolution from 
PRISM (PRISM Climate Group, 2004).  

Some areas in mountainous regions are covered by glaciers, permanent snowfields, and exposed 
bedrock, which are unsuitable locations to model landslides on soil-mantled hillslopes using the 
infinite slope model (Borga et al., 2002).  Furthermore, they are not expected to be destabilized 
by precipitation, although other forces could cause failures (e.g., earthquake, volcanic activity, 
and temperature).  We exclude high elevation areas covered by glaciers, permanent snowfields 
and exposed bedrock (Fig 3.3c), as well as wetlands and other water surfaces, based on landform 
mapping and maps of lithology and LULC, from our modeling domain and geomorphic analysis 
because shallow landslides are not typically observed on these landforms. The total area 
excluded from the stability analysis accounts for about 21% of NOCA’s land area. 
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Figure 3.3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours are in 
100-m intervals. Aerial image source from World Imagery, Esri Inc.1; (b) elevation distribution of the 
relative frequency of mapped debris avalanche source areas (upper 10%); and (c) High elevation rock and 
glacier mapped surrounding Spiral Glacier in North Cascades showing a bedrock glacier cirque with thin 
barren soils and moraine deposits (photo by John Scurlock with permission).   

3.3.2  Model Input Fields  
We used a grid resolution of 30 m to evaluate and compare our regional model of landslide 
probability to a limited set of landslide observations. A 30-m grid cell size is consistent with the 
minimum mapping unit used for landslides (Riedel et al., 2015; see also Regmi et al., 2014). 
Slope (S=tanq), combined curvature (Curv), and contributing area (CA) attributes were derived 
from a 30-m DEM acquired from National Elevation Dataset (NED) (USGS, 2014a) (Fig. 3.2a).  
In addition, the NLCD data for vegetation classification and the SSURGO soils database we used 
in this study both have available 30-m grid resolutions. To show the model potential for regional 
applications, a global coverage of 30-m DEM from the NASA Shuttle Radar Topography 
Mission (SRTM) is available (USGS 2017). Thus, showing the model’s potential at this 
resolution is intended in this paper, especially for regional applications beyond the use in a single 
watershed across the globe.    
 
3.3.2.1  Vegetation and Soil parameters 
Parameters of a triangular distribution for C, ø, T, and hs are provided in Table 1. In our case 
study, C represents root cohesion because we assumed soils to be primarily cohesionless, due to 

                                                
1 Images  created  using  ArcGIS®  software  by  Esri.  ArcGIS®  and  ArcMap™  are  the  intellectual  property  of  Esri  and  
are  used  herein  under  license.  Copyright  ©  Esri.  All  rights  reserved.  For  more  information  about  Esri®  software,  
please  visit  www.esri.com. 
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low clay content in this mountain substrate. We developed spatial coverages for minimum, 
mode, and maximum C for NOCA by relating vegetation classes with corresponding published C 
values in the literature (Table 1), where field observations suggest right-skewed distribution 
(Hammond et al., 1992; Schmidt et al., 2001; Gabet and Dunne 2002; Hales et al. 2013). Based 
on ranges available in the literature, we selected a mode value as a commonly reported value, 
minimum parameter as 30% of the mode, representing death and loss of productivity (Sidle, 
1991; 1992), and a maximum near the highest reported value for C. Other LULC types include 
water, wetland, snow/ice, barren, and developed (e.g., roads, campground). Small C values are 
assigned for barren and developed land uses (~14% of the domain) having minimal vegetation. 
Mode values of C mapped over NOCA are given in Fig. 3.4b. 
 
Table 3.1.  Parameters defined for vegetation and soil types in the study region. For spatially 
continuous parameters, values represent the statistics for the model domain with (mean) values in 
parentheses. 

Parameter Minimum Mode (Mean) Maximum 
Root Cohesion [kPa] 

Barren/Developed  
Forest (coniferous) 
Shrubland 
Herbaceous 

 
0.03 

3 
1.2 
0.6 

 
0.10 
10 
4 
2 

 
0.15 
20 
10 
5 

Internal angle of friction [°]1 
Loamy sand 
Sandy loam 
Developed areas (loamy, sandy) 

  
26.2 
28.7 

28.7, 31.2 

  
32 
35 

35, 38 

  
42.2 
46.2 

46.2, 50.2 
Transmissivity [m2 d-1]	  2 0.42 (3.39) 16.4 
Soil depth [m]	  † 0.09 (0.62) 2.01 
1 Developed areas within the two soil types, respectively, have mode values 3o larger due to compaction. 
2	  	  Values for the continuous variables, transmissivity and soil depth, represent the minimum, mean, and maximum 
for the study area, not individual soil map units. 

 
Despite the aggregation of plant types into functional plant communities (Fig. 3.4a), considerable 
spatial variability in C is present within the park (Fig. 3.4b), with the greatest values in the forest 
communities of the valley bottom and lower valley walls.  As communities transition from forest 
to shrublands to herbaceous species with increasing elevation, C declines.  Note that herbaceous 
species are likely composed of considerable woody vegetation in this alpine region, but of 
diminutive stature.  
 
In order to investigate the contribution of soil depth to mapping landslide probability, we 
developed and used two alternative soil depth products. The nationally available SSURGO 
database maintained by the Natural Resources Conservation Service (NRCS) is a readily 
available data source that includes depth-to-restrictive layer (DOA-NRCS 2016), which we used 
to specify the mode of soil depth (Fig. 3.4c). Using the Soil Data Viewer of Esri ArcGIS (DOA-
NRCS, 2015a), the weighted-average aggregation option is used to extract soil depth within each 
soil map unit (DOA-NRCS and DOI-NPS, 2012).  SSURGO soil depth (SSURGO-SD) is 
uniform for each soil map unit and thus, lacks finer scale spatial heterogeneity and create edge 
incongruities (Fig. 3.4c), a limitation also identified in other landslide modeling studies (Bordoni 
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et al., 2015). A smoother and spatially consistent soil depth map is achieved using the soil 
evolution model.  
 
SSURGO-SD represents the recent conditions in soil depth. The difference between the actual 
soil depth in the field and the SSURGO reported soil depth will likely be associated with the 
limited number of soil depth measurements used to develop SSURGO maps, measurement 
errors, and spatial interpolation assumptions. In addition, for the locations that have already 
produced landslides before SSURGO mapping, we assume that the maximum value of the 
triangular distribution represents the soil depth prior to a landslide. To represent uncertainty, 
minimum hs is assumed to be 70% of the mode and maximum hs adds 10% to the mode value. 
These values give a left-skewed triangular distribution, commonly used in probabilistic landslide 
models (Hammond et. al., 1992). Selected ranges were confirmed by the soil evolution model 
discussed in Sect. 3.1.2.    
 
Transmissivity is derived as the product of weighted-average aggregated Ks of all soil layers 
above the restrictive layer and hs for each soil map unit (DOA-NRCS, 2015a). Similar to hs, this 
T value was considered the mode (Fig. 3.4d) and the minimum and maximum values needed for 
an asymmetrical triangular distribution calculated as: Tmin = Tmode - 0.3*Tmode and Tmax = Tmode + 
0.1*Tmode. Closely related to soil depth, transmissivity is high in valley bottoms as well on 
plateaus because of deeper soils, thus, more water can move through the soil when saturated 
(Fig. 3.4d). Transmissivity is low in the thin veneer soils below retreating glaciers as well on 
steeper side slopes. 
 
Soil surface texture is a grouping used to describe the particle size distribution of granular media, 
and can be used as an indicator of ø (Nimmo, 2005).  The percent sand, silt, and clay (weighted-
average aggregation) for each soil map unit in NOCA were derived from SSURGO data using 
Soil Data Viewer (DOA-NRCS, 2015b). This revealed largely sandy loam or loamy sand soil 
textures, based on USDA classification, across the NOCA.  These soil textures corresponded to 
Unified Soil Classification System (USCS) soil types silty sand and well-graded (diverse particle 
size) fine to coarse sand, respectively.  Reported ø values for these USCS soil types were 
assigned as the ømode (i.e., Table 5.5 in Hammond et al., 1992 and Table 5.2 in Shelby, 1993). 
Developed land cover type was assigned an additional 3° to the mode to compensate for higher 
soil density from development activity, such as compaction (Sidle and Ochiai, 2006). The map of 
ø exhibits the least variability in NOCA due to the relatively narrow range of soil textures, with 
lower angles typical at higher elevation and higher angles farther downslope (figure not shown). 
Given the mode and ranges of ø for these soil types, minimum and maximum ø were calculated 
to generate right-skewed distributions for both soil types as: ømin = ømode - 0.18*ømode and ømax = 
ømode + 0.32*ømode. The soil and water density terms in Eq. (1a), were assigned a constant value 
of 2,000 kg m-3 and 1,000 kg m-3, respectively (Pack et al., 2005). 
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Figure 3.4. Distributed parameters used in the landslide model over NOCA, including: (a) LULC 
classified from NLCD (USGS, 2014); (b) root cohesion based on LULC; (c) soil depth from SSURGO; 
and (d) transmissivity based on SSURGO soil depth.  Mapped values in (b) through (d) represent the 
mode values used in the parameter distributions. Insert shows zoomed-in area with 100 m contours.   

3.3.2.2  Model Recharge  
The model is designed with a flexible approach to parameterizing recharge. Available probability 
distributions include uniform, lognormal, lognormal spatial, and data driven spatial. 
Supplemental materials include a Jupyter Notebook that reproduces these four recharge options 
on a synthetic grid.  To provide the hydro-climatology forcing to drive our landslide model, our 
model application leverages the existing detailed simulations of VIC in the PNW region 
developed through the Columbia Basin Climate Change Scenarios Project (Elsner et al., 2010; 
Hamlet et al., 2013).  The project developed a calibrated implementation of VIC (1/16° or 5x7 
km grid resolution) covering the Columbia River basin in Washington to produce validated 
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historical hydrologic simulations (water years 1916-2006) driven by spatially interpolated daily 
station observations of temperature and precipitation (Hamlet et al., 2013). Archived model 
output at a daily-time-step includes gridded baseflow and runoff.  Hydrologic simulations using 
VIC have also been run for all of the contiguous United States (CONUS; Livneh et al., 2013, 
2015).  Thus, acquisition of hydrologic model output is readily available to apply the landslide 
model anywhere throughout the CONUS. We determined the maximum daily recharge for each 
year to generate a 91-year long time series to calculate the annual highest pore-water pressure at 
each VIC grid cell.  Modeling with maximum recharge provides an indicator of individual storm 
events that typically trigger shallow landslides (Lu and Godt, 2013), although lesser amounts of 
recharge may also be sufficient to trigger landslides in some locations. 

3.4  Results and Discussion 
3.4.1  Geomorphic Analysis and Soil Evolution 
Understanding the spatial distribution of dominant geomorphic processes can aid the 
development of landslide hazard maps consistent with geomorphic theory. In this section, we 
discuss the mapping of dominant processes on the landscape on the slope and area domain, and 
explore the proposed soil evolution model to develop modeled soil depth maps.  
 
3.4.1.1  Investigation of Process Domains 
Hillslope diffusion, landslide, debris flow, and fluvial transport processes leave unique imprints 
on landforms, manifested in the slope-contributing area (S-CA) domain as different scaling 
relationships (Montgomery and Dietrich, 1992; Tucker and Bras, 1998; Montgomery, 2001; 
Stock and Dietrich, 2003; Tarolli and Fontana, 2009).  The infinite-slope factor-of-safety model 
is only applicable to the initiation of landslides. Therefore, hazards associated with debris flow 
scour and deposition cannot be predicted by this model. We used a S-CA plot and the infinite 
slope stability theory to: (1) identify process domains and limit the analysis of the landscape to 
slopes where there is shallow landslide potential, (2) evaluate observations of debris avalanches 
to identify landslide source areas, and (3) infer plausible ranges of the infinite slope stability 
model parameters to corroborate those we compiled from the literature for NOCA (Table 1).   
 
Our geomorphic analysis was based on plotting, in log-log scale, S, (as tan(q), and CA pairs of 
each DEM grid cell in NOCA, cells within mapped debris avalanches (including depositional 
areas), and most likely source areas of landslides identified as the single highest elevation grid 
cell within each mapped debris avalanche (Fig. 3.5). The general trend in the S-CA relationship 
is acquired for all grid cells of NOCA as well as debris avalanche (DA) cells by binning the data 
with respect to CA and calculating the mean S for each CA bin. The negative linear relation in 
the log-log plot suggest a power-law scaling in the form of S~CA-B where B is the slope of the S-
CA relation on the log-log domain, which reflects channel longitudinal profile concavity. 
Concavity is generally associated with the role of discharge (CA is used as a surrogate in this 
plot) in enhancing sediment transport, while the degree of concavity is tightly related to how 
nonlinear the dominant transport is with respect to S and CA (Roering et al, 1999; Montgomery 
2001; Istanbulluoglu 2009).  Geomorphic process domains interpreted from the binned S-CA 
plot portrayed in Fig. 3.5 include: (1) a hillslope zone where slope-dependent processes such as 
dry ravel and soil creep dominate, leading to convex slopes, (2) a landsliding zone where pore-
pressure driven slope failures introduce concavity as landslides arise with shallower slopes as 
recharge CA grows, (3) a debris flow or saturated landslide zone in headwater channels where 
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mass wasting processes are supplemented with higher fluidity and ground saturation leading to S 
and CA driven high-concentration transport (Iverson et al., 1997), and (4) a fluvial region where 
stream-dominated erosion and transport processes ensue (Montgomery and Foufoula-Georgiou, 
1993; Tucker and Bras, 1998). Dominant process domains in the S-CA plot are identified by 
visual inspection of the scaling transitions that mark changes in concavity.  It is well documented 
that debris flows show reduced concavity relative to both channels and pore-pressure driven 
landslide zones in the S-CA domain (Montgomery and Foufoula-Georgiou, 1993; Tucker and 
Bras, 1998; Stock and Dietrich, 2003).  The highest profile concavity results from fluvial 
transport (Fig. 3.5).  
 
 

 
Figure 3.5. Slope-contributing area (S-CA) plot for North Cascades National Park Complex.  Mean S for 
bins of CA are indicated by blue dots and cyan dots for all cells and debris avalanche (DA) cells, 
respectively.  DA source cells (orange triangles) are the single highest elevation grid cell within mapped 
debris avalanches (gray).  Slope stability curves plot the solution of Eq. (1a) for FS=1, given C* and 
ø=34°. Above each curve landscape is unstable for a given C*.  Saturation line (red curve) separates 
partially saturated areas (left) from saturated areas (right).  Vertical lines divide the plot into geomorphic 
process domains in relation to CA of the landscape (e.g., Montgomery 2001). Cyan horizontal line at 17° 
generally separates potential landslide dominated areas from fluvial dominated areas.  

A threshold CA of approximately 1 km2 and a slope threshold of q=17° generally separates 
colluvial mass wasting and debris transport processes from fluvial processes (Fig. 3.5; see also 
Legg et al., 2014). Nearly all grid cells within mapped debris avalanches plot to the left of the 1 
km2 dashed line.  An average q value of 17° may also correspond to a low-end of a slope 
threshold for landsliding. Fully saturated cohesionless soils are unconditionally stable at tan(q) ≤ 
½ tan(ø) (i.e. half of ø), assuming a ratio of water to saturated soil density of 0.5 (e.g., 
Montgomery and Dietrich, 1994). Solving for ø when q = 17° gives 34°, generally consistent 
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with selected ø values from soil texture (Table 1) (Hammond et al., 1992).  Approximately 85% 
of NOCA landscape lies above q > 17°, suggesting a dominant role of mass wasting processes in 
this landscape. We included areas above this slope threshold in our landslide model domain.  
 
The red saturation curve is calculated as aR/T, where R/T is calibrated to 0.0005 m-1 (e.g., a/sinq 
= 2000 m) to capture most of landslide source cells (left of curve) and a scaling break in the 
binned S-CA plot (Fig. 3.5).  The saturation curve partitions the landscape into partially saturated 
(left) and saturated (right) areas, which generally delineates the S-CA pairs separating 
landsliding from debris flow tracks that form under full soil saturation. For a T = 10 m2 d-1, R is 
5 mm d-1, which is within the range of the lowest maximum annual modeled recharge values in 
most of the study area, indicating that the plotted saturation line could reasonably map regions 
that experience saturation annually.  
 
The three lines stacked vertically plot the solution of S in the infinite slope stability equation (Eq. 
1a and 2) as a function of CA, and given FS=1, R/T=0.0005 m-1, ø=34° and select values of 
dimensionless cohesion, C*. Conditioned on the C* value, slopes that plot above the S-CA 
solution are unstable. Consistent with the binned S-CA data, the solution of the infinite slope 
stability equation curves down as a function of CA, and following soil saturation, a constant 
instability S threshold is reached.   Root cohesion is approximately 6 kPa for C*=0.3 (middle 
green line) and 12 kPa for C*=0.6 (upper pink line), assuming a soil depth of 1 m.  These root 
cohesion values are reasonable for shrub and mature forest vegetation found in the literature 
(Table 1) and they facilitate stability with steeper slopes.  When C*=0 (bottom cyan line), 
landslides initiate at lower slopes than when cohesion is greater. This solution also envelops the 
low slope-end of nearly all landslide source S-CA pairs identified from debris avalanche data.  
Only a small portion of the unstable areas plot above the C*=0.6 solution of Eq. (1a), which 
implies areas with higher root cohesion. 
 
3.4.1.2  Evolved Soil Depth 
We ran the soil evolution model described in Sect. 3.2.4 at representative topographic conditions 
and used the results in a nonlinear regression analysis to estimate soil depth from slope and total 
curvature.  As the study domain is large, we used a representative population of q [o], CA, and 
Curv values to run the soil evolution model for different vegetation types. The resulting 
nonlinear equations were used to estimate the mode of modeled soil depth (M-SD) of each 
vegetated grid cell of the study domain. Capitalizing on the S-CA analysis (see Sect. 3.1.1), q, 
CA, and Curv triplets in each of the CA bins are used from the landscape dominated by colluvial 
transport processes (q>17o and CA≤1 km2).  In order to further classify landscapes within each 
CA bin, q and Curv pairs are grouped into shallow (q ≤ the 10th percentile q), moderately steep 
(between 10th and 90th percentiles of q), and steep (q ≥ the 90th percentile q) slope classes.  
Within each class, q and Curv are averaged.   
 
We ran the soil evolution model for 10,000 years to represent the postglacial landscape (i.e., 
roughly the current interglacial period or Holocene) using the calibrated parameters listed in 
Table 2, allowing soil sediments to develop from bedrock and to be removed through diffusive 
and mass wasting processes. We ran the soil model for the three slope classes and for mature 
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forest, shrubs, and herbaceous root cohesion (Table 1).  Mean and mode soil depth were 
calculated for a given q, CA, and Curv for each vegetation type.  

Table 3.2. Model parameters used in the soil evolution model 
Parameter Value Units 
h(initial) – initial soil depth 0.01 m 
α – rate of exponential decay with depth 3 m-1 

Po – soil production rate from exposed bedrock 0.0005 m yr-1 

Kd – linear hillslope diffusion coefficient 0.01 m2 yr-1 

rr  / rs – Rock to soil density density 2.65/2 [-] 

Ks – saturated hydraulic conductivity 7 m d-1 
ø – internal angle of friction 35 Degrees 
Root cohesion1 Varies kPa 
Recharge (mean)2 and Coefficient of variation  32, 0.35  mm d-1 
1 Root cohesion varied by vegetation type based on Table 1 and soil cohesion was assumed to be zero. 
2 Recharge extracted from average values found at four representative VIC grid cells within NOCA. 

 
Both q and Curv have been found to be correlated with soil depth (Heimsath et al., 1997; Braun 
et al., 2001; Mitchell and Montgomery, 2006; Hren et al., 2007). A multivariate nonlinear 
regression in the form of y=β1·x1

m+β2·x2+C was fit to mean and mode of soil depth (predictand, 
y) given q and Curv (predictors, x1 and x2) for each vegetation type with R2 >0.9 for all slope 
classes (not reported). Maps for mode of the modeled soil depth (M-SD) were developed over 
the portion of the NOCA domain by applying the regression equations using the distributed q 
and Curv appropriate for vegetation type at each grid cell.  Minimum and maximum depth were 
set at 0.005 and 2 m, respectively.  Outside the colluvial transport process domain are conditions 
outside the regression analysis; therefore, vegetated areas were assigned a depth of 0.5, 1, and 2 
m for herbaceous, shrubland, and forest, respectively, to generate a contiguous soil depth map for 
NOCA consistent with SSURGO. Areas with barren land cover were assigned a soil depth of 
0.05 m, representing the minimum range of modeled herbaceous areas. Developed areas were 
assigned a value of 0.5 m. Areas assigned fixed values are about 2% of the model domain. 
 
As an alternative to the SSURGO-SD, the map of the mode values of M-SD was used to 
represent the most likely soil depth at each grid cell in the landslide probability model.  The 
evolved soil depth was also used to revise T, using the Ks provided by SSURGO, which provides 
a more-distributed continuous field of T.  The revised T map is used when Landlab is run based 
on mode from M-SD.   
 
Local erosion is calculated within the soil evolution model. Calibration of the soil evolution 
model was performed by adjusting model parameters from the literature (e.g., Tucker and 
Slingerland, 1997; Nicótina et al., 2011) and comparing the mean annual rock erosion rate 
estimated by the model to long-term average rock erosion rates published for the Cascade 
Mountains, which range from 0.02 to 0.5 mm y-1 over roughly the last several Ma (Reiners et al., 
2002, 2003) and slightly higher rates over the last millennia of 0.08 to 0.57 mm y-1 (Moon et al., 
2011).  In addition to published erosion rates, the resulting soil depths were compared to the 
SSURGO-SD, which ranged from 0.09 to 2.01 m across NOCA. 
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Modeled erosion rates ranged from 0.037 to 0.49 mm y-1, consistent with published rates as 
determined by mineral cooling ages (Reiners et al., 2002, 2003; Moon et al., 2011).  In Fig. 3.6 
we show modeled mean annual erosion rates in relation to modeled mode soil depth for a steep 
and moderate slope class, and illustrate the local variability of M-SD under forest and shrub 
conditions. The relative frequency histogram of soil depth resembles a triangular distribution, 
with mode values generally higher than mean values, indicating a negatively (left) skewed 
distribution for soil depth (Fig. 3.6a, c).  Therefore, there is a higher frequency of deeper soil 
relative to shallower soils for a given soil distribution.  Soil creep fills hollows, thickening soils, 
as FS gradually drops, leading to episodic landslides that evacuate sediment (Fig. 3.6b, d). 

 
Figure 3.6. Illustration of the soil evolution model run using (a, b) steep slope class and forest vegetation 
and (c, d) moderately steep slope class and shrub vegetation. (a, c) Modeled mean annual erosion rates 
plotted with respect to soil depth, along with soil depth histogram for a representative convergent 
location. (b, d) Temporal evolution of soil depth and FS for a representative convergent location with: (a) 
S=40o and Curv=-0.01; and (b) S=29o and Curv=-0.01.  

Comparison of the SSURGO-SD with the M-SD indicates that there is value in a long-term 
geomorphic perspective in supplying a spatio-temporal soil depth.  M-SD exhibits substantially 
more spatial variability than the SSURGO-SD (Fig. 3.7).  While both soil depth distributions 
have similar median values, M-SD has a wider distribution with a higher proportion of shallower 
and deeper soils than SSURGO-SD.  In general, the M-SD is shallower than SSURGO-SD on 
steeper, convex hillslopes with herbaceous or shrub vegetation and deeper on gentler, concave 
hillslope with forest vegetation. For both models, soil depth is greater in the valleys and 
shallower near the ridge tops (Fig. 3.7c, d), consistent with other reporting (Anagnostopoulos et 
al., 2015; Montgomery and Dietrich, 1994).    
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Figure 3.7. Relative histograms of soil depths within NOCA: (a) SSURGO-SD and (b) mode of M-SD, 
with respective spatial mean and coefficient of variation (COV).  Example location (~6 km2) within 
NOCA:  (c) SSURGO-SD and (d) M-SD. Mapped debris avalanches are outlined in cyan and contours 
are at 100-m. 
 
The maximum and minimum soil depth parameters of the triangular distribution to characterize 
soil depth variability were obtained by analyzing soil evolution model results. At most q, CA, 
and Curv triplets using in the soil evolution model, a landslide occurred at least once.  Given the 
negatively-skewed nature of the temporally evolved soil depth, maximum evolved soil depth was 
set equal to 10% of the mode in all model simulations. Two M-SD scenarios were developed to 
compare with SSURGO-SD reflecting existing contemporary and long-term soil depths. In 
SSURGO-SD and M-SD simulations we set the minimum parameter as 70% of the mode.  
However, for a long-term evolved soil depth (M-SD LT), if the minimum was greater than 0.005 
m, the minimum soil depth was set to 0.005 m, reflecting the effect of landslides over a long 
term. This introduces a temporal uncertainty component to modeling landslide probability, which 
can be used to more accurately estimate landslide return period.   
3.4.2  Probability of Failure 
Modeled annual probability of failure of shallow landslides, P(F), for NOCA simulated by the 
Landlab LandslideProbability component using SSURGO-SD and two M-SD scenarios are 
shown in Fig. 3.8.   In each run 3,000 values were sampled for model parameters at each grid cell 
in the Monte Carlo simulations.  
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a)   SSURGO-SD  b) M-SD   c) M-SD LT 

 
d)  SSURGO-SD  e) M-SD   f) M-SD LT 

 
Figure 3.8. Landslide annual P(F) map for NOCA overlain with mapped debris avalanches for 
simulations with: (a) SSURGO-SD; (b) M-SD; (c) M-SD LT. Zoomed-in areas are shown for greater 
detail in the lower panel in the same order and according to number designated. Purple areas are 
considered chronically unstable and areas excluded from analysis are shown as gray. Contours are at 100 
m. Aerial images of zoomed-in areas are provided in Fig. 3.3.  
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P(F) derived from simulations exhibit low probabilities where slopes are moderate and cohesion 
is high (e.g., forest). Highly unstable areas largely correspond to steep barren landscape mostly 
located below retreating alpine glaciers, with steep glacial landforms, transitioning from glacier 
to colluvial processes (similar to Guthrie and Brown 2008; Tarolli et al., 2008; Legg et al., 2014) 
(Fig. 3.9). Barren areas cover ~13% of the modeled domain. These areas with a thin veneer 
colluvium, except for moraines, appear to be “continuously sliding” (Borga et al., 2002) or 
“chronically unstable” (Montgomery, 2001), which also impedes the colonization of vegetation 
(Dietrich et al., 1995; Istanbulluoglu and Bras, 2005). Shallow soils can enhance the probability 
of saturation, leading to high pore-water pressure and saturated overland flows with moderate 
storms (Pelletier and Rasmussen 2009). Mass wasting activity in barren areas were not 
completely included in our landslide inventory as they exhibit chronic small-scale slides that do 
not pose major risks or substantial deposition zones.  
 

a) b 

 
Figure 3.9.  Illustration of highly unstable steep areas: (a) High resolution (0.3 m) imagery of a NOCA 
mountain (World Imagery, Esri Inc.)1 compared to (b) P(F) simulated by M-SD with mapped debris 
avalanches.  Contours at 100 m. Notice the barren areas below retreating glaciers with high P(F). 
 
Other locations of higher P(F) are located in topographic hollows (Fig. 3.8, 3.9).  These 
converging areas accumulate deeper soils, which decreases the effectiveness of root cohesion, 
and attract subsurface flow, leading to enhanced pore-pressure (Dietrich et al., 1995). 
Converging areas often correspond to the upper portions of mapped debris avalanches, which 
display higher landslide probabilities than the runout portions in simulations.  Thus, the landslide 
probability visually appears to capture the source area of debris avalanches.  
 
Substantial differences between P(F) derived with different soil depth maps are evident (Fig. 3.8 
and Fig. 3.10) and corroborate previous studies showing the influence of various soil depth 
estimates on landslide susceptibility (Dietrich et al., 1995; Okimura, 1998).  In general, 
probabilities are higher and more spatially extensive when the model is parameterized using 
SSURGO-SD compared to both M-SD scenarios.  Given that other parameters are kept 
consistent, these differences are attributed to spatial variability of soil depth and related 
adjustments to transmissivity.  
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To investigate the spatial distribution of P(F) in relation to soil depth, we plot the cumulative 
distribution of P(F), referred to as the fraction of modeled area where P(F) is less than or equal to 
a given value, for each simulation (Fig 3.10a). We present our general observations of the spatial 
distribution of P(F) in the order of SSURGO-SD, M-SD, and M-SD LT as depicted in Fig 3.8. 
Simulations show approximately 26%, 38%, and 49% of the modeled domain (79% of NOCA, 
where q>17°) as stable (i.e., P(F)=0) under the current vegetation cover and climate. We refer to 
these sites as unconditionally stable (i.e., stable even when saturated, and with minimum C and ø 
sampled) (Pack et al., 1998; Montgomery 2001). A bimodal spatial distribution for P(F) is 
evident (Fig. 3.10a, b). Areas with low probabilities, around P(F)≤0.1, dominate the spatial 
distribution of P(F), manifested with a steep rise in the fraction of area from P(F)=0 to P(F)=0.1 
(Fig 3.10a).  For P(F)≤0.1 (RP≥10 years), the order of aerial cover for the model domain, 
including the stable regions, is 72%, 85%, and 87%. When the unconditionally stable areas are 
excluded, the percentages become 46%, 47% and 38%, respectively, for the three soil depth 
products used. This region approximately marks the first peak of the relative histogram of P(F) 
(Fig. 3.10b). In the broad 0.9>P(F)≥0.1 range, the increase in fraction of area with P(F) is 
gradual especially for the two M-SD simulations (Fig. 3.10a). In the highly unstable regions, 
with P(F)≥0.9 (RP≤1.1years) as mapped in Fig. 3.8 and Fig. 3.9, the fractional area begins to rise 
again in all simulations (Fig 3.10a).  P(F)=1 occupies 11% and 7% of the modeled area in the 
SSURGO-SD and M-SD simulations, which can be conceptually named as unconditionally 
unstable (i.e., unstable even when dry and with the highest combinations of C and ø sampled) 
(Pack et al., 1998; Montgomery 2001).  The model run using M-SD LT soil scenario shows a 
smaller area percentage, ~6%, with P(F)≥0.9, while SSURGO-SD and M-SD had 16% and 10%. 
M-SD LT soil scenario provides a more realistic estimate as some locations are not likely to 
produce slope failures annually due to limited soil development.  The second peak of the relative 
frequency histogram of P(F) appears when P(F)>0.9, largely associated with postglacial barren 
lands with steep mountain slopes, and converging topography, especially in the case of 
SSURGO-SD (Fig. 3.10b). Dominant factors that control the relative frequency of P(F) are 
labeled in Fig 3.10b, and further discussed in subsequent sections. 
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Figure 3.10. (a) Cumulative distribution and (b) relative frequency of P(F) (bin size ∆P(F)=0.025) 
mapped over NOCA from Landlab simulations using SSURGO-SD and two M-SD scenarios. Labels 
indicate dominant controls on the distribution of P(F) in (b). Fraction of area is used for cumulative 
spatial probability, plotted using the Weibull plotting position. Return Period for landslides are illustrated 
only for SSURGO-SD. 
  
We expressed the annual probability of landsliding in the form of a RP, plotted with respect to 
fraction of area for all three simulations, and mapped RPs for the M-SD LT scenario in Fig. 3.11. 
The M-SD LT reduces the probability and increases the return period estimates of landslide 
initiation, revealing the influence of long-term memory of landsliding on the probability 
distribution of soil thickness obtained from the soil evolution model.  Therefore, the M-SD LT 
scenario would better suit the definition of RP, while the other two simulations provide reference 
for relative comparisons. In general and in concert with the P(F), landslides at nearly all RPs 
affect a greater proportion of the domain when SSURGO-SD is used.  Approximately 28% of the 
model domain is simulated to have a landslide return period of less than or equal to 10 years (i.e., 
P(F)≥0.1 or frequent slides) based on SSURGO-SD, compared to half as much area, 15%, for 
simulations using M-SD; M-SD LT had slightly less at 13%. Low return periods (i.e., < 10 
years) coincide with steep slopes in barren areas that show chronic landsliding, low-cohesion 
vegetation type, such as herbaceous, as well as some steep hollows.  
 
At the high end of the return period, 46% of the model domain was simulated to have landslides 
with a return period of ≥500 years for SSURGO-SD scenario, including stable areas, compared 
to 52% and 70% for model runs that used M-SD and M-SD LT scenario, respectively (Fig. 3.11).   
High return periods (i.e., RP>500 years, P(F)< 0.002) are found where slopes are gentler, on 
divergent topography, and in forest areas.  The fraction of the model domain with a landslide 
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return period between 100 and 500 years is 10%, 18%, and 21% for SSURGO-SD, M-SD, and 
M-SD LT, respectively, showing a larger fraction in the M-SD products. These landslide 
frequency rates relate to long-term averages and the actual failures are likely to be clustered in 
space and time depending on triggering event and the time since the last landslide at the same 
location (Guthrie and Evans, 2004).  

 
Figure 3.11.  Modeled landslide return period simulations with M-SD LT for NOCA overlain with 
mapped debris avalanches, including zoomed in areas at top for greater detail. Cumulative distribution of 
return periods for SSURGO-SD, M-SD, and M-SD LT scenarios, plotted on a log-log scale using the 
Weibull plotting position.   
 
As soils in landslide locations are formed by sediment accumulation from surrounding hillsides 
and weathering of the local bedrock, landslides can be the main source of denudation across 
landslide-prone regions. The expected values of mean annual denudation rate is approximated 
by: mean(P(F)*hs)/( rr /rs) for each simulation. This gives spatial average of the long-term 
denudation rates due to landslides as 51.9 mm y-1, 7.06 mm y-1, and 5.04 mm y-1 for SSURGO-
SD, M-SD, and M-SD-LT scenarios, respectively. While these rates are higher than the reported 
mean annual denudation rates in this region over the last millennia of 0.08 to 0.57 mm y-1 (Moon 
et al., 2011), M-SD-LT clearly gives the closest estimates to observations among the three soil 
depth scenarios. Over an order of magnitude variation in denudation rates is also common as part 
of long-term records of erosion rates (e.g., Molnar, 2004).   
 
A critical question that remains is: what are the dominant controls that lead to the bimodal 
distribution of landslide probability in the modeled domain? First, we examined if topography 
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alone, represented by S and CA pairs, can explain this behavior. The S-CA data pairs from each 
model grid cell are colored by the value of P(F) in the order from low to high value using output 
from the M-SD LT scenario (Fig. 3.12).  As slopes get steeper (S>0.45 or 24.2o), a relatively 
rapid increase in P(F) in relation to slope from 0.4 to 1.0 can be seen, surrounded with lower 
probabilities. CA does not seem to impose a visually detectable increase in P(F), which is likely 
largely due to the wet climate in region. The landslide source cells identified from the highest 
elevation of debris avalanche shapefiles fall in the “eye” of this high-P(F) region in the S-CA 
domain. Interestingly, P(F) diminishes in the steepest slopes of most CAs. While the trend of 
increasing P(F) as slope gets steeper generally shows the influence of slope in Eq. (1a), 
landscape with P(F)≥0.4 only constitute about 11% of the model domain (Fig. 3.10a). For 
comparison P(F)≥0.1 was 13%. On the other hand, about 57% of the domain has steeper slopes 
than 24.2o (S=0.45m/m). Locations with slopes less than this are rarely found with P(F)>0.4. 
This suggest that the majority of the domain with similar pairs of S and CA exhibit lower 
landslide probability, which can be largely attributed to the spatial distribution and influence of 
vegetation type and soil depth (e.g., Roering et al., 2003). 
 

 
Figure 3.12. S-CA plot colored by the P(F) simulated with from the M-SD LT.  Source cells (orange 
triangles) are the single highest-elevation grid cell within mapped debris avalanches.  Comparable to Fig. 
3.5. High probabilities plot over low probabilities.  
 
We investigated the roles of vegetation, slope steepness, and soil depth on P(F) in relation to 
elevation (Fig 3.13). From low to high elevations, vegetation changes from predominantly forest 
(elevation <1,400 m) to coexisting shrub, herbaceous plants, and barren land (1,400 m to 2,200 
m) as a result of elevation-dependent ecoclimatic controls (e.g., temperature) on vegetation 
survival and growth (Fig. 3.13a).   In this region of ecosystem transition, the mean P(F) shows a 
persistent increase from 1,400 m until a maximum is reached between 2,200 and 2,400 m, 
depending on simulation (Fig. 3.13b, c). Observations of debris avalanche by elevation confirm 
the pattern of P(F) dependence on elevation in relation to ecosystem change; 75% of the 
extracted landslide initiation zones from mapped debris avalanches are located between 1,200 m 
to 2,000 m (Fig. 3.3b). In the 1,400 to 1,900 m elevation range of the ecosystem transition zone, 
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mean slope is relatively constant ~0.75 m/m (~37o), and rises up to 0.9 m/m (42o) between 1,900 
and 2,200 m (Fig 3.13c), consistent with the binned-averaged slopes of the landslide source area 
in the S-CA plot in Fig 3.5. Mean soil depth begins to drop in both SSURGO and modeled soil 
depth products above 2,200 m.  
 
These observations confirm the strong control of ecosystem transition on landslide activity in the 
region.  Below about 1,400 m (~40% of NOCA), forested vegetation combined with deeper soils 
and moderate slopes keep P(F) low. In the 1,400 to 2,200 m range, loss of root cohesion with 
ecosystem transition combined with gradual increase in landscape slopes contribute to increased 
P(F).  Above 2,200 m elevation, soils become very shallow and slopes exhibit the steepest angles 
in the modeled domain. This combination leads to the largest variability in P(F), combining the 
highest P(F) values, P(F)≥0.9 mostly attributed to barren areas (~6% of the model domain in the 
M-SD LT scenario), with lower P(F) values where thinner soils reduce the driving force within 
Eq. (1a). In aggregate, thinner soils at higher elevations lead to lower mean P(F), which we 
referred to as soil depth control. The general contribution of elevation on the spatial organization 
of P(F) is labeled in Fig 3.10b.  
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Figure 3.13. Elevation (200 m bands or bin) influence on: (a) vegetation cover fraction for NOCA, taken 
as fraction of vegetation type within each elevation band, (b) mean P(F) using SSURGO-SD and two M-
SD scenarios, along with compact box-whisker plots for P(F) of M-SD LT scenario where circles-dot 
symbol represents median (outliers not shown, greater than 1.5 interquartile distance) overlaid with 
hypsometric curve for NOCA, and (c) mean soil depth for SSURGO-SD and M-SD products with mean 
slope.  Mean values calculated within each 200-m elevation band.  
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3.4.3  Model Evaluation 
The performance of a landslide model is often based on its ability to capture existing mapped 
landslides.  In Sect. 3.4.2 we evaluated our model through visual comparison of modeled P(F) to 
observed landslide locations (e.g., Fig. 3.8, 3.9). In this section, a more quantitative approach is 
presented for model evaluation.  We statistically evaluated our model using multiple approaches, 
including cumulative distribution (CD) of P(F) comparisons as well as Receiver Operating 
Characteristics (ROC) (Fawcett, 2006) and Success Rate (SR) curves (Bellugi et al., 2015).   
 
For the statistical analysis, we limited our performance assessment to the source areas of the 
mapped debris avalanches.  Source areas of debris avalanches were not mapped separately from 
the remaining debris avalanche features (i.e., transition and deposition zones) hindering the 
evaluation of model predictions (Tarolli and Tarboton, 2006). Because we anticipate that the 
source areas could originate from a neighboring grid cell, we considered source cells as a 
collection of grid cells in the upper 10, 20, and 30% highest elevation cells within each mapped 
debris avalanche shapefile.  These populations of source cells were treated as ‘observed’ 
landslide source cells during validation of the landslide probability using CD, SR and ROC 
performance metrics. In this validation, we excluded barren areas with slopes ≥ 37° (~5% of the 
model domain), which characterizes slopes of active small-scale dry landslides (failure depth ≤ 
soil depth) more appropriately represented by nonlinear hillslope diffusion models (see Roering 
et al., 1999; DiBiase et al., 2010; Pelletier et al., 2013). 
 
For comparison of P(F) with source area cells, we randomly sampled 50,000 grid cells outside 
mapped debris avalanches (~2% of the modeled domain), similar to the number of grid cells 
within entire mapped debris avalanche areas.  The majority of the source grid cells and outside 
debris avalanches cells are located at elevations between 1200 and 1800 m (Fig. 3.14a). Grid 
cells in the random sample outside debris avalanches were constrained to the elevation range of 
the source cells to allow unbiased comparison. We recognize that the areas outside mapped 
debris avalanches have the potential to be unmapped landslides, other landslide types, or 
unstable areas deficient a triggering event; therefore, we interpret the test results conservatively.  
We expect the simulated P(F) should estimate lower probability outside debris avalanches 
compared to source areas of mapped debris avalanches.   
 
At low and mid elevations, simulations generally showed a greater fraction of high probabilities 
in source areas compared to outside of debris avalanches (Fig. 3.14b, c).  However, when only 
high elevation (>1,800 m) data were considered, the pattern was reversed with a larger fraction 
of high probabilities found outside debris avalanches than source areas (Fig. 3.14d).  At this 
higher elevation, much of the land cover is barren or herbaceous (i.e., low root cohesion), 
resulting in high probabilities of failure throughout the model domain (Fig. 3.12a). While there 
are extensive shallow failures in these regions only limited amount of those that turned into 
debris avalanches were mapped.  This reverse pattern is also present at mid-elevations (~1,200 to 
1,800) for both M-SD scenarios, only for 10% of the sample data, when P(F)>0.03 and P(F)>0.1 
for M-SD and M-SD LT, respectively (note the crossing curves in Fig. 3.14b).  At low elevation 
(~125 to 1,200 m), there were no source areas with P(F)>0.4 in M-SD and M-SD LT scenarios. 
 
The performance of the model results we are presenting in this paper are specific to a sample 
comparison of 10% source area of mapped debris avalanches and random sampling outside 



www.manaraa.com

 54 

debris avalanches.  When examining the validation datasets in their entirety (i.e., regardless of 
elevation), the median P(F) of the 10% source DA cells is 13 times the median P(F) of outside 
DA for SSURGO-SD and four times the median P(F) for M-SD; median is zero for outside DA 
cells in the M-SD LT.  The Kolmogorov-Smirnov test (Chakravart et al., 1967) test show paired 
comparison between DA source area cells and cells outside DA for all three scenarios are 
statistically different (p<<0.01). 

 
Figure 3.14. a) Relative histogram of source areas in upper 10% elevation of debris avalanches (DAs) 
and for 50,000 grid cells outside DAs.  Cumulative distributions of P(F) plots limited to P(F) ≤ 0.2, or 
return period ≥ 5 years, to highlight detail in simulation using SSURGO-SD, M-SD, and M-SD LT at: b) 
low (<1,200 m), c) mid (1,200 to 1,800 m), and d) high (>1,800 m) elevations as depicted in a).  Thicker 
lines represent probabilities for source areas of (DAs) and thin lines represent probabilities for cells 
outside DAs.  
 
Another statistical analysis uses ROC curves to examine how our model compares with 
randomly distributed landslides over the landscape.  These curves are constructed from 
confusion matrices generated from comparisons between observed and modeled landslides, 
based on varying P(F) threshold (e.g., 0.1, 0.2, 0.3, etc.). True positives (TP) are those cases 
within observed landslides where probabilities are equal to or greater than threshold.  False 
negatives (FN) are probabilities within landslides that fall below the threshold.  False positives 
(FP) occur outside observed landslides with simulated probabilities equal to or above the 
threshold.  True negatives (TN) are also outside observed landslides, but with probabilities below 
the threshold. From these metrics, true positive rate (TPR) or fraction of landslides captured and 
false positive rate (FPR) or fraction of false alarms can be calculated as follows: 
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𝑇𝑅𝑃 = 	   Z[
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 (8) 
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 (9) 

The advantage of the ROC curve over a standard confusion matrix is the ability to vary the 
probability threshold for assigning model simulations to a modeled landslide (positive) or no 
landslide (negative) classification, generating different positive and negative comparisons 
(Mancini et al., 2010; El-Ramly et al., 2002; Anagnostopoulos et al., 2015).  A better performing 
model will exhibit a curve toward the upper left of a FPR (x-axis) and TPR (y-axis) plot.  A 1:1 
line in the plot represents a trivial model that randomly assigns stable and unstable cells. The 
area under the curve (AUC) generated by ROC curve quantifies the performance of a model for 
identifying landslide and non-landslide locations.  The AUC statistic represents the probability of 
correctly ranking a landslide and non-landslide pair randomly selected from those two datasets 
(Hanley and McNeil, 1982).  SR curves are similar to ROC curves, with TPR as the y-axis, but 
compares this to the fraction of landscape predicted as unstable (x-axis), calculated as 
(TP+FP)/(TP+FP+TN+FN).  Again, a relatively well performing model would plots farther away 
from the 1:1 line representing a trivial model.   
 
For this comparison, we used the same datasets used in the cumulative probability analysis 
discussed Sect. 3.4.2.  Both simulations using SSURGO and M-SD modeled 10% source areas 
and non-landslide areas better than random selection as demonstrated by the curves plotted 
above the 1:1 line (Fig. 3.15).  The classification is stronger as the source area fraction is 
reduced.  However, the model’s strength in the classification is modest as indicated by the AUC 
values of between 0.60 and 0.61, compared to an AUC of 1 representing a perfect classification.  
The TRIGRS-P probabilistic landslide model tested by Raia et al. (2014) found higher AUC 
results (i.e., 0.65 to 0.73).  However, their study tested small areas (3 to 6 km2) that were well 
studied locations with detailed inventories of landslides resulting from one or two winter rainfall 
seasons and the entire landslide was tested rather than source areas only. 
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Figure 3.15. a) ROC curves and b) SR curves for simulations using SSURGO-SD, M-SD, and M-SD 
long-term (LT). Comparison represent P(F) for the upper 10% of DA as observed landslides to a random 
sample of 5,000 cells outside DAs.  Thresholds for simulated probabilities associated with positive 
classification of a source areas declines along the curves from lower left to upper right. Black diagonal 
line on a 1:1 line represents the case of a trivial or random classification model. 
 
ROC and SR curves provide an indication of how well the modeled simulations of P(F) classify 
both observed landslide source cells and non-landslide grid cells compared to random 
classification.  The crossing of ROC and SR curves in the simulations with M-SD (Fig. 3.15) 
implies that at higher probability thresholds, simulated probabilities delineate more false alarms 
(e.g., areas outside DAs as unstable) than capturing source areas. This may be indicative of the 
high probability values at high elevations even outside the debris avalanches where vegetation is 
sparse, as was indicated above in the analysis of cumulative distribution plots.  We found for our 
case study that the optimal probability threshold to maximizing landslides captured and 
minimizing false alarms (i.e., point around the apex of the ROC curves) declines by half 
depending on the simulation: P(F)≥0.008 (i.e., RP≤125 years) for SSURGO-SD, P(F)≥0.004 
(i.e., RP≤250 years) for M-SD, and P(F)≥0.002 (i.e., RP≤500 years) for M-SD LT.  
 
The modeled potentially unstable landscape has generally been greater than observed landslides 
when infinite slope stability models are calibrated with limited observations (Sidle and Ochiai, 
2006; Baum et al., 2010).   As pointed out by Borga et al. (2002), concluding 
“overrepresentation” of areas potentially subject to shallow landsliding can be misleading 
because the absence of mapped landslides does not necessarily indicate an absence of landslide 
hazard over time across the landscape.  Locations with high landslide probability outside mapped 
landslides in both simulations could be indicators of where to conduct additional investigations 
for missed landslides or areas on the verge of failing. 
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Validating hazard maps is challenging, especially in large areas of remote mountainous regions, 
because inventories are typically incomplete, lack the date of landslide occurrence, different 
landslide types likely have different meteorological triggers, environmental conditions change 
after a landslide event, and unidentified high probability areas may fail in the near future even 
though they appear to be stable during an inventory (van Westen et al., 2006; Tarolli and 
Tarboton, 2006).  Additional evaluation of model performance would benefit from field 
investigation in areas of high and low modeled P(F) to identify any landslides or instability that 
may have been missed during the original inventory.  Future work that couples the volume of 
sediment available for landsliding will lead to further improvements in estimating hazards and 
potential impacts from landslides.  
 
4.4.4  Model Limitations 
For model design and computation efficiency, we made several simplifying assumptions.  We 
neglect groundwater leakage to the bedrock in recharge estimation and apparent soil cohesion 
through the effect of surface tension in unsaturated zones, both of which could be added to future 
updates to the component.  Tree and snow surcharge is also disregarded, although it may have 
some stabilizing effect where soils are shallower than 1 m (Hammond et al. 1992). Our approach 
does not simulate the actual number of landslides, landslide type, nor the size of the landslide 
because the discretized nature of the failure field precludes specific knowledge of which and how 
many grid units may be involved in a failure at a particular time.  These model omissions present 
opportunities for future customization of the component or coupling with other models.  
 
Modeled probability does not capture the runout of debris avalanches, which can travel 
considerable distances in steep mountainous environments.  Some unexpected results depicted 
higher probability in runout portions of some debris avalanches when using SSURGO-SD, but 
these probabilities were lower when M-SD scenarios were used (e.g., Fig. 3.8, middle zoomed-in 
panels).  Mis-mapping of probabilities of failure and observed landslide are likely attributed to 
variations in soil depth, material properties, and hydrologic routing (Schmidt et al., 2001).  
Model parameters such as slope derived from DEMs developed with post-landslide mapping can 
also contribute to reduced probabilities in observed landslides where slope and soil depth were 
reduced.  Furthermore, inventories over broad areas are challenging as landslides are isolated 
processes that may occur with regularity, but may not be large in size (Van Westen et al., 2006). 
Finally, steady-state flow that we used for subsurface flow neglects transient processes and roles 
of macro-pores. Macropores from decayed roots or animal activity can be important in 
transporting water relatively quickly from the surface to deeper soil layers and groundwater 
(Sidle et at., 2001; Gabet et al., 2003; Beven and Germann 2013).  
3.5  Conclusion 
We develop a regional model of probabilistic shallow landslide initiation based on the infinite 
slope stability equation coupled by steady-state subsurface hydrology driven by groundwater 
recharge. Uncertainty in model parameters is explicitly accounted for through Monte Carlo 
simulation.  A geomorphic soil evolution model provides a spatially-distributed soil depth 
alternative to homogeneous patches of soil depths provided by SSURGO.  This feature allows 
the landslide model to be used where soil depth information is uncertain, sparse, or absent. Our 
model developed in Landlab (Hobley et al., 2017) is made up of a landsliding component, a 
Landlab utility for hydrologic data processing, and a model driver that runs the component.  The 
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model driver can be run on personal computers or online via Hydroshare through cloud 
computing creating reproducible results.  Our approach demonstrates: 
 
●   Regional maps of landslide hazard produced with three different soil depth scenarios 

reveal alternative simulations of probability of landslide initiation, reflecting the 
importance in soil depth in landslide hazard prediction.  

●   Simulations using SSURGO-SD returned higher probability of failures and shorter return 
periods than simulations using modeled soil depth products (M-SD and M-SD LT).  The 
M-SD LT simulation further reduces the probability of failure and increases the return 
period. Mean annual denudation estimates from the M-SD LT scenario show closer 
estimates to published rates of denudation over the last millennia than the other 
simulations.  

●   SSURGO-SD scenario provide a short-term tool for high risk planning using 
conservative estimates of probability of failure, while M-SD LT provides long-term 
estimates more consistent with landslide frequency in the region and useful for 
management of ecosystems and aquatic habitats, and estimation of sediment budgets for 
watershed planning. 

●   Elevation dependent patterns in probability of landslide initiation show the stabilizing 
effects of forests in low elevations, an increased landslide probability with forest decline 
at mid elevations (1,400 to 2,400 m), and soil limitation and steep topographic controls at 
high alpine elevations and post-glacial landscapes. These dominant controls manifest in a 
bimodal distribution of spatial annual landslide probability, modes controlled by highly 
stable forested and chronically unstable post-glacial domains and other barren areas. 

●   Model testing with limited observations revealed similar model confidence for the three 
hazard maps, suggesting suitable use as relative hazard products. Validation of the model 
with observed landslides is hindered by the completeness and accuracy of the inventory, 
estimation of source areas, and unmapped landslides. 

●   Our shallow landslide hazard model provides regional scale estimates of the relative 
annual probability of shallow landslide initiation as well as landslide return period, which 
is useful for civil protection through land use planning to minimize geohazard 
consequences from precipitation triggers. 

3.6  Data and Model Availability     

To facilitate ease of use of the landslide hazard model, we developed the landslide model as a 
component of Landlab, an open-source Python toolkit for two-dimensional numerical modeling 
of Earth-surface dynamics available at GitHub:  http://github.com/landlab/landlab (Hobley et al., 
2017).  Documentation, installation instructions, and software dependencies for the entire 
Landlab project can be found at: http://landlab.github.io/.  The Landlab project is tested on 
recent-generation Mac, Linux and Windows platforms using Python versions 2.7, 3.4, and 3.5. 
The Landlab modeling framework is distributed under a MIT open-source license.  A user 
manual and driver scripts for the application of the Landlab LandsideProbability can be found at: 
https://github.com/RondaStrauch/pub_strauch_etal_esurf (Strauch, GitHub Repository)  

 
Online access to the Landlab LandslideProbability model is freely provided through 
https://www.hydroshare.org, where data and code drivers are available to demonstrate and 
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explore the model using interactive IPython notebooks in a JupyterHub.  Thus, users can access, 
test, adapt, and apply the landslide model for their area of interest without downloading Landlab 
or the components.  Data and driver code used in this analysis are available at hydroshare 
(Strauch et al., 2017).  Existing demonstration driver codes can be adapted to fit data provided in 
raster format by the user to create distributed data fields used as parameters in the component. 
Instructions for accessing HydroShare and the online demonstrations, codes, and data used in 
this paper are provided in supplemental material.  
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Supplemental Material 
 
Accessing Landlab landslide component through HydroShare 
Access to a reproducible application of the Landlab LandslideProbability component for the 
North Cascades National Park Complex (NOCA) using a Jupyter Notebook via Hydroshare is 
provided through the following steps.  The HydroShare resource contains or accesses the data, 
application driver code, and Landlab LandslideProbability component, all that is needed to 
reproduce the probability of failure discussed in this paper.  

1.   Go to https://www.hydroshare.org and click on 'Sign up now' blue Button 
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2.   Create an account if you don’t have one. After filling out “Sign Up” profile information 
(can edit at a later date), verify and activate account from your email (sent by 
HydroShare). 

3.   At https://www.hydroshare.org, sign In with you user name (email) and password. 
4.   Click on ‘Discover’ tab in the menu at top. 
5.    In Search window, type: “Regional landslide hazard using Landlab - NOCA 

Observatory”. Select this resource.  Read the Abstract about this resource and scan 
sections below. 

6.   Scroll down to see the ‘Content’ and the data used in the landslide component and the 
Jupyter Notebook that accesses the notebook 
“NOCA_runPaper_LandlabLandslide.ipynb” that will ‘drive’ the landslide model. 

7.   To run this reproducible application within HydroShare, once you’ve navigated to the 
“Regional landslide hazard using Landlab - NOCA Observatory”, click on the 'Open 
with…' blue button and select “JupyterHub NCSA’. 

8.   A “Welcome to the HydroShare Python Notebook Server” will open in a new window. 
This notebook steps through the model preparation, allowing you to execute the Landlab 
LandslideProbability component. Review the descriptions for this welcome notebook and 
scroll down to the first code box. To access HydroShare resources, execute the first 
shaded code box with In [ ]: in front and then typing “shift-enter” (both keys at the same 
time).  A * will appear in the [ ] when this code box is running and a number will appear 
in the [1] when it is finished. 

9.   You will likely need to enter your HydroShare Password again in the box provided.  This 
should end with a green text saying “Successfully established a connection with 
HydroShare”. 

10.  Also execute the next code box to see where the data to run the reproducible application 
is located, given by a long resource id.  

11.  “Get Resource Content” is the next code box.  This accesses the “landslide_driver.ipynb” 
NOCA application.  If you’ve run this application before, it will ask if you want to 
overwrite your previous work, type ‘y’ (‘n’) for yes (no).  this will end with the 
statement: 
‘Successfully downloaded resource 07a4ed3b9a984a2fa98901dcb6751954‘ 

12.  A list of the content of this Observatory is provided as well as the notebook we need.  
Click on the “NOCA_runPaper_LandlabLandslid.ipynb” notebook in blue text. 

13.  Now you are inside the landslide application. Read the introduction and begin executing 
the code boxes one-by-one using “shift-enter”.  Also read the before and after text boxes 
to understand what you’re executing.  Some might take a few seconds or even minutes to 
run given the size of the datasets. If an error occurs, try restarting the kernel by clicking 
"Kernel" on the menu above and select “Restart”.  

14.  You can also try some of you own code by selecting the + in the menu bar at top, which 
adds a new code cell where you can execute python code.   

15.  You can save the execution of this notebook back to HydroShare as your own resource at 

the end of the notebook.  View and download these files by clicking on the 
icon in the upper left corner. View the notebooks folder and explore the subfolders, 
including the data folder.   

16.  To end your Jupyter server session, either select ‘File’, ‘close and halt’ within the 
notebook, or select the ‘Running’ tab, ‘Shutdown’ button within the Jupyter server. 
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1. Background on LandslideProbability Component 
The Landlab LandslideProbability component implements the infinite slope stability model using 
a Monte Carlo simulation to predict the probability of shallow landslide initiation based on local 
slope, specific catchment area, climatological triggers, and soil and vegetation parameters on 
Landlab’s RasterModelGrid. A for loop inside the component executes the Monte Carlo 
simulation at each node of the RasterModelGrid. The LandslideProbability component is 
executed by a user-written driver script that parametrizes, instantiates, runs, and plots data and 
results.  This User Manual describes the LandslideProbability component and how to 
parameterize, instantiate, run, and plot data and results described in Strauch et. al., (in review) 
and using “Regional landslide hazard using Landlab - NOCA Observatory” containing two 
example model drivers available on https://www.hydroshare.org/.  This document is a 
supplement to the manuscript in Earth Surface Dynamics. 
 
The component is based on Mohr-Coulomb failure law using the infinite slope stability model 
that predicts the ratio of stabilizing forces due to friction and cohesion, mediated by pore-water 
pressure to destabilizing forces due to gravity, implemented on a failure plane parallel to the land 
surface, coupled with a topography-driven steady-state subsurface flow model (Montgomery and 
Dietrich 1994; Pack et al. 1998). The component executes a Monte Carlo solution of the coupled 
model by generating model forcing and parameters: daily recharge to subsurface flow that 
reflects local pore-water pressure through regulating the water table, soil internal friction angle, 
combined root and soil cohesion, soil transmissivity, and soil depth from assumed probability 
density functions. Local slope and specific catchment area are generated from a digital elevation 
model (DEM). Several options are offered for recharge. This component expands the capabilities 
of Landlab by providing a probabilistic shallow landsliding model that can also be used to 
develop watershed sediment yield models.  
 
Note: Currently, the LandslideProbability component can only operate on a structured grid; 
therefore, all the references to the grid below are referring to the Landlab RasterModelGrid 
object.  
 
Prerequisites: A working knowledge of the Python programming language (any version) and 
familiarity with the Python libraries NumPy and Matplotlib are beneficial.  Also, a basic 
understanding of the Landlab modeling framework (Hobley et al., 2017) and the 
RasterModelGrid module is recommended. 
 
2. Model Description 
2.1. Model Parameters (inputs) 
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Spatial model parameters listed here are primarily pre-processed by the model user in a 
geographic information system, such as Esri’s ArcGIS rasters converted to ASCII format.  Users 
may acquire and generate these parameters from a variety of sources.  Details on where to find 
readily available data and how to process these data into parameter rasters are provided in 
Strauch et al., (in review).  For example, root cohesion can be generated from reclassifying land 
use/land cover (LULC) rasters from USGS National Land Cover Data (USGS 2014; Jin 2013) 
based on reference to a lookup table that specifies the root cohesion for different LULC types, 
Table 1 in Strauch et al., (in review).  The reclassified raster can then be converted to an ASCII 
file for import into Landlab, defined with number of rows and columns and cell size.  
 
Parameters are assigned as fields to nodes in the RasterModelGrid. Most Landlab names follow 
the naming conventions of Community of Surface Dynamics Modeling System (CSDMS) 
(Peckham, 2014).  Fields are accessed using Python’s dictionary data structure where the field 
name, such as ‘topographic__slope’ is a string keyword assigned and used to access the values 
array. Methods to import these parameters into Landlab are detailed below in section 3.3 Step 3.   
 
● topographic__slope: [-] – local elevation gradient slope of surfaces as represented by the 
tangent of hillslope slope angle. 
● topographic__specific_contributing_area: [m] – specific contributing area calculated 
as upslope drainage area/unit contour length (e.g., grid cell width) using the multiple flow 
direction D-infinity approach of TauDEM. 
(http://hydrology.usu.edu/taudem/taudem5/index.html ) 
● soil__internal_friction_angle: [deg] Critical angle just before failure due to friction 
between particles. 
● soil__maximum_total_cohesion: [Pa] Maximum of combined root and soil cohesion. 
● soil__minimum_total_cohesion: [Pa] Minimum of combined root and soil cohesion. 
● soil__mode_total_cohesion: [Pa] Mode of combined root and soil cohesion. 
● soil__thickness: [m] Depth to restrictive layer (e.g., bedrock, low permeable layer). 
● soil__transmissivity: [m2/day] depth integrated saturated hydraulic conductivity; 
required input if conductivity is NOT provided. 
● soil__hydraulic_conductivity: [m/day] rate of water transmitted through soil; required 
input if transmissivity is NOT provided to calculate transmissivity with soil depth 
● soil__density: [kg/m3] Wet bulk density of soil, which is set uniformly across model 
domain at 2000 kg/m3 in the current application, but can be spatially distributed by user as a 
field on the RasterModelGrid. 
 
The hydrologic driver of shallow landslide initiation in this model is a daily annual maximum 
rate of recharge [mm/d].  Given that users may acquire or identify recharge from various 
resources or approaches, the LandslideProbability component provides four options to 
parameterize recharge. These options control the amount of data used within the model and the 
distribution of the data, which is designed to represent uncertainty in recharge rate. The options 
are identified through a ‘distribution’ specified by the user as listed below. The distribution and 
parameters are passed from the drive to the component. Additional details on setting up the 
recharge are provided in Determine groundwater recharge inputs in section 3.5. 
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•   groundwater__recharge_distribution: [mm/d] distribution to use for representing recharge 
specified as one of four options: 
o   ‘uniform’ – user specifies parameters groundwater__recharge_min_value and 

groundwater__recharge_max_value used to generate uniformly distributed recharge 
applied uniformly over the RasterModelGrid. 

o   ‘lognormal’ – user specifies parameters groundwater__recharge_mean and 
groundwater__recharge_standard_deviation used to generate lognormally distributed 
recharge applied uniformly over the RasterModelGrid. 

o   ‘lognormal_spatial’ – user specifies parameter arrays for 
groundwater__recharge_mean and groundwater__recharge_standard_deviation for 
each node of the RasterModelGrid used to generate spatially variable lognormally 
distributed recharge.  We recommend providing parameters from routed recharge to 
better represent the spatial hydrology as arrays of: groundwater__recharge_mean and 
groundwater__recharge_standard_deviation. 

o   ‘data_driven_spatial’ –  user specifies three dictionaries for 
groundwater__recharge_HSD_inputs in a list using the format of [HSD_dict, 
HSD_id_dict, fract_dict] (in that order).   HSD is the ‘Hydrology Source Domain’ that 
provides the recharge from a hydrologic model, which is processed to generate routed 
recharge at each RasterModelGrid node using a nonparametric method.     

 
2.2. Model Variables (outputs) 
Variables listed below are calculated by the component at RasterModelGrid locations in the 
model domain. 
● soil__mean_relative_wetness: [-] mean of the ratio of depth of subsurface flow over a 

restrictive layer to the depth of soil layer over the restrictive layer. The value has a range 
from 0 (dry soil) to 1 (saturated soil). 

● soil__probability_of_saturation: [-] ratio number of times relative wetness is ≥1 out of 
number of iterations user selected 

● landslide__probability_of_failure: [-] ratio of the number of failures simulated (i.e.,  
FS ≤ 1) divided by the number of iterations in the Monte Carlo simulation, which 
calculates deterministic FS values. 

 
3. Basic Steps of a Landslide Model 
Here we first list the basic steps to develop a Landlab Landslide hazard model, followed by their 
detailed explanations.  
1. Import necessary libraries:  Only LandslideProbability from landlab.io is required.  
However, optional libraries that may be useful include: numpy, read_esri_ascii, write_esri_ascii, 
matplotlib, cPickle, os, collections, and pandas, depending on the data processing and outputs 
desired by the user. The SourceTracking _Utility is also helpful for routing.  
2. Define model domain:  The model computational domain of the LandslideProbability 
component can only work on a RasterModelGrid instances as of Landlab version 1.0.0. 
3. Load model input data and parameters: Several data and parameter fields are required to 
run the LandslideProbability component. These input parameters, described above, can be 
typically read in using read_esri_ascii() if they are prepared in ESRI’s ArcGIS software, or can 
consist of arrays of the same length of the number of nodes, and assigned to the 
RasterModelGrid.   
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4. Set boundary conditions: Often only a portion of the model domain is desired for analysis, 
such as watershed boundaries, jurisdictional boundaries, or areas above a certain topographic 
criterion such as elevation.  Additionally, input parameters often have missing data that are 
excluded from analysis.  These regions can be defined by setting set_nodata_nodes_to_closed() 
(Hobley et al. 2017). http://landlab.readthedocs.io/en/latest/landlab.grid.base.html#boundary-
condition-control . 
5. Set Monte Carlo iterations value: The user set the number of iterations they wish for the 
Monte Carlo simulation.  
6. Determine groundwater recharge inputs:  Flexibility is provided for the user to define the 
groundwater recharge used to calculate relative soil wetness. The user must determine the 
recharge values and or parameters as well as the desired parametric probability distributions they 
wish to use for data generation. 
7. Initialize LandslideProbability component: The instance of the LandslideProbability class is 
declared and parameters are set by the user. 
 
3.1. Step 1. Import necessary libraries 
To build a landslide model using the Landlab LandslideProbability component, first the 
necessary Landlab components and utilities, as well as any necessary Python packages and 
customized utilities must be imported.  Standard Python style dictates all import statements 
belong in the top of the driver file or script, after the module docstrings. An example of a 
landslide model driver begins as follows: 
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To run the model for the application here, only the LandslideProbability component is needed.  
This will calculate relative wetness and probability of failure across the model domain, which is 
at a 30-m resolution in this application.  The domain will be defined by the DEM (see Step 2).  
Other Landlab utilities used in this example are the plotting library imshow_node_grid, which is 
a utility that can plot a Landlab grid instance and data field in map view (see Section 4).  Finally, 
additional Python packages and user defined utilities are imported.  In this application, the 
numpy and matplotlib are dependencies of Landlab, meaning they are installed as part of the 
Landlab installation and thus, are likely already available with the user’s Python distribution.  
The scientific computing library numpy is used for mathematical operations, and the matplotlib 
library is for plotting model output.  The os library is useful for handling files and folders when 
processing data, such as hydrologic flux files in the HSD.  The cPickle library helps handle 
dictionaries that provide lookup tables of identifiers and data used in the SourceTracking_Utility 
and data_driven_spatial recharge option. Pandas Python package provides fast, flexible, and 
expansive data structures particularly useful for process data associated with dates such as flux 
files. 
 
3.2. Step 2. Define the model domain 
As mentioned above, the LandslideProbability component was designed to work on a gridded 
landscape by using the RasterModelGrid instance in Landlab.  The RasterModelGrid is square 
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and composed of nodes, which are points in (x,y) space in the implementation of the 
LandslideProbability component.  The grid nodes consist of rows and columns numbered from 0 
at the lower left corner of the grid and ending at the upper right corner of the grid, looping left to 
right in number as one moves up the rows from the bottom. Calculations in the 
LandslideProbability component are made at each grid cell as represented by the central node.  
There are two methods to implement a RasterModelGrid in Landlab. A grid can be created by 
reading in data from an ASCII file created in Esri ArcGIS or using the RasterModelGrid class 
directly. An example using a DEM to establish a grid instance follows the syntax:  
 (grid, z) = read_esri_ascii(‘elevation.txt', name='topographic__elevation') 
The second approach can be accomplished with the following code: 
 grid = RasterModelGrid((number_of_node_rows, number_of_node columns), 𝝙x)   
 
The first method demonstrated below is reading a DEM with read_esri_ascii().   

 
In this application, the ‘elevation.txt’ represents a square domain of 3217 rows and 2185 
columns that includes the North Cascades National Park Complex in Washington, U.S.A.  The 
path to the file was previously defined in ‘data_folder’ variable and is dependent on the user’s 
file system.  The second command assigns the elevation data to nodes.  This particular DEM was 
pit-filled using TauDEM.  The component does not use elevation in the calculations; however, 
loading it established the full model domain and can be helpful in visualizations.  
  
The second method to establish an elevation grid sets the RasterModelGrid instance manually: 

 
This application assumes that model user knows and defines the number of grid rows, number of 
grid columns, the grid resolution (dx) and elevation data at each node. The 
user_defined_elevation_data must be the same length as the number of nodes in the 
RasterModelGrid, which can be found by using the command: grid.number_of_nodes() after the 
first line.  The first row must match the lower left position and end with the upper right position 
of the RasterModelGrid. 
 
3.3. Step 3. Load model input data and parameters 
Ten model inputs, including topographic attributes and hydrologic forcing variables as well as 
soils and vegetation related parameters, are required by the LandslideProbability component.  
Nine of these are assigned to the RasterModelGrid and thus, provide the ability to spatially vary 
the parameters across the model domain.  These are typically pre-processed in ArcGIS and read 
in similar to the DEM using read_esri_ascii(‘parameter’) using the example code block below 
for slope. Note that in the development of specific catchment area, a larger domain is used to 
capture the regional boundary of the watersheds that contribute flows into the boundaries of the 
study area if it does not follow watershed boundaries.   
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If the user has an array of values, they can assign the values to the RasterModelGrid similar to 
the alternative method described above for establishing an elevation field. The user may also 
want to set a parameter uniformly across the model domain, such as soil density using the syntax 
below. 

 
This approach can also be used to set soil__minimum_total_cohesion and 
soil__maximum_total_cohesion if only a soil__mode_total_cohesion is provided and the users 
wished to set the minimum and maximum as a fraction of the mode. 
 
3.4. Step 4. Set boundary conditions 
Often there are gaps in data or areas of a model domain that a user wished to exclude from 
analysis.  These areas are handled through the establishment of boundary conditions on the grid 
nodes. Node boundary status can be set to boundary or core; boundary nodes can be further 
defined as open or closed. Grid perimeter nodes are open and interior nodes are core nodes by 
default.  Interior nodes can be set to closed boundary conditions by the user for nodes that have 
no data, commonly represented by value -9999.  The core nodes are the nodes where the 
component operates and calculates probability of failure. Landlab has several methods to set and 
update boundary conditions at node elements. Data imported for model parameters in Step 3 
often have missing values usually defined as -9999.  These can be set to closed nodes using the 
following command: 

 
This is also an approach for using a mask set up in ArcGIS where locations to include in the 
analysis have node values set to 1 and areas to exclude set to -9999.  To test a subarea before 
analyzing an entire modeling domain, the mask can be set up for a subarea and then commented 
out to run the model for the entire domain.  Another way to test an area is to establish a subset of 
core_nodes and run the component only for this subset. 
 
3.5. Step 5. Set Monte Carlo iterations value 
The number of Monte Carlo iterations, n, is a parameter defined by the user.  The simulated 
failure probability becomes more stable (i.e., consistent) with increasing n at the expense of 
computer time (Cho 2007; El-Ramly et al. 2002). Hammond et al. (1992) recommends at least 
1,000 iterations for the Monte Carlo simulation.  This is set by the user using the following 
syntax:  

 
 
3.6. Step 6. Determine groundwater recharge inputs 
Groundwater recharge is the hydrologic driving force that increases pore-water pressure within 
the soil layer, reducing the effective normal stress.  The LandslideProbability component 
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provides several options for the user to provide recharge input.  Within the driver, the user 
provides information on recharge, which is used to instantiate the component. This information 
includes a distribution and the parameters (Table 1).  The distribution can be: ‘uniform’, 
‘lognormal’, ‘lognormal_spatial’, or ‘data_driven_spatial’.  The parameters represent scalars, 
arrays, or lists, depending on the distribution specified. Options are shown in Table 1 and 
detailed descriptions with code snippets for each distribution type follow the table.  
 
Table 1 – Recharge inputs accepted by LandslideProbability component 

Distribution Parameters Input / Comments 
‘uniform’ ●   minimum 

●   maximum 
Minimum and maximum recharge is provided to 
generate a uniform sampling distribution over the 
model domain  

‘lognormal’ ●   mean 
●   standard 

deviation 

Mean and standard deviation of recharge is provided to 
calculate mu and sigma for generating a lognormal 
sampling distribution applied uniformly over the 
model domain.   

‘lognormal_spatial
’ 

●   [mean] 
●   [standard 

deviation] 

Mean and standard deviation arrays are provided for 
each node and used to calculate mu and sigma for a 
lognormal sampling distribution for each node such 
that recharge is spatially distributed. Each of these 
arrays needs to be the same length as RasterModelGrid 
nodes. Only core node values will be used in 
calculations. 

‘data_driven_spati
al’ 

●   {HSD_Re} 
●   {HSD_ID} 
●   {fractions}  

HSD_Re dictionary is a unique array of recharge 
provided as arrays (‘values’) for each of the 
Hydrologic Source Domain (HSD) (‘keys’). HSD_ID 
dictionary has the model domain node ID as ‘keys’ and 
HSD IDs in a list as ‘values’.  The fractions dictionary 
assigns to each node ID as ‘key’ a lists the fractions of 
each HSD draining to the node as ‘values’.   

● Recharge: ‘uniform’ 
In this option, the user specifies distribution as ‘uniform’ and defines the minimum and 
maximum recharge [mm/d] parameters to be used in the component to generate a uniform 
distribution that is applied uniformly over the model domain.  This is the default option used in 
the component. A code snippet below demonstrates how to provide this information in the driver. 

 
● Recharge: ‘lognormal 
Instead of providing minimum and maximum recharge values, in this option, the user specifies 
the distribution as ‘lognormal’ and provides the mean and standard deviation parameters of the 
recharge to be used to calculate mu and sigma for generating a lognormal distribution.  This 
distribution is then applied uniformly over the model domain.  A code snippet below 
demonstrates how to provide this information to the driver. 
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● Recharge: ‘lognormal_spatial’ 
This option allows for spatial representation of recharge.  Similar to previous option, this option 
applies a lognormal distribution to represent recharge from arrays of mean and standard 
deviation representing recharge at each node.  Note that the mean and standard deviation is from 
the native form of recharge acquired by the user and not a log transformation of the recharge.  
Additionally, this array must be as long as the length of all nodes in the model domain, such that 
the first mean is for node ID 0.  A code snippet below demonstrates how to provide this 
information to the driver using a random generation of integers for mean recharge from NumPy. 

 
● Recharge: ‘data_driven_spatial’ 
This recharge option provides an even more elaborate handling of recharge data.  In this option, 
the user specifies the distribution as ‘data_driven_spatial’ and three Python dictionaries are 
provided or generated in the driver using the STA utility to make spatially-distributed arrays of 
recharge at each node while looping through nodes in the component. An example of the driver 
description using recharge from a HSD that is spatially variable is provided below: 

 
In the application of the model in Strauch et al. (in review), we used spatial recharge rates from 
the Variable Infiltration Capacity (VIC) macroscale hydrologic model (Liang et al., 1994) 
simulation run at a daily time step for a historical period (water years 1916 to 2006) on a 1/16th° 
grid resolution (Hamlet et al., 2013). In our application of the model, we focus on landslide risk 
over the contemporary climate. Assuming landslides would most likely initiate during high 
water-input (rain and snowmelt) events, we use only the maximum modeled recharge rate in 
each water year at each VIC grid cell. Using a single recharge value for a year in a Monte Carlo 
simulation gives an annual probability of shallow landsliding.  The native resolution of the VIC 
hydrology, generically named as ‘Hydrology Source Domain’ (HSD) is coarser than the 
resolution of the landslide model.  A separate ‘source tracking’ algorithm (STA) written as 
Landlab utility (SourceTracking_Utility) is run in the model driver, or in a separate Python 
script, to map the HSD data to the finer model domain resolution. This algorithm tracks the HSD 
grid IDs draining to each node of the RasterModelGrid and calculates the fraction of the 
upstream drainage area contribution from each HSD.  This tracking is packaged into two Python 
dictionaries with both ‘keys’ as the RasterModelGrid node ID, and the ‘values’ as lists of the 
HSD grid IDs and the corresponding fraction of each draining HSD grid ID, respectively. These 
two dictionaries along with a dictionary of the HSD grid ID (key) and a numpy array of recharge 
(value) are passed onto the component.  The component uses the recharge data from each 
contributing HSD IDs and generates recharge using a non-parametric method while looping 
through each node of the RasterModelGrid.  Using the other two dictionaries, the recharge at a 
node is weighted by the upstream contributing fraction from different HSD grids and a ‘routed’ 
recharge is calculated for each node (Fig. 1).  
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Fig. 1 – Workflow for source routing of recharge when downscaling from macro-scale hydrology 
to RasterModelGrid.  Blue section at bottom right is work being performed inside the 
LandslideProbability component.  
 
The STA is Landlab utility that traverses a RasterModelGrid, and records all upstream 
contributing core nodes for each core node. Unique HSD ids that represent the upstream core 
nodes, for each core node, will be returned as a Python dictionary. For more detailed explanation 
of the algorithm, refer to STA utility user manual 
(https://github.com/landlab/pub_strauch_etal_esurf ) 
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3.7. Step 7. Instantiate and run LandslideProbability component 
Most Landlab components are structured as a Python class.  These classes are imported (as seen 
in Step 1) and then the user must create an instance of the class as shown below.  When the 
instance of the class is created (e.g., LS_prob1), parameters are passed as arguments to the class. 
All Landlab components take a grid as their first argument.  The first argument passes on the grid 
as named by the user and all subsequent arguments are additional parameters (see section 2.1.) 
used to control the model behavior.  The elegance of Landlab is that all the fields are attached to 
the grid object and are automatically passed to the component class at once through the ‘grid’ 
object. The recharge parameterization and number of iterations are also passed as arguments.  
Once the component has been instantiated, the component is run to calculate the probability of 
failure by calling the component’s method calculate_landslide_probability() in a for loop that 
performs the calculations at each node.  Example syntax are provided below for all four recharge 
options: 

 
Probability of failure is calculated at each RasterModelGrid node by solving the infinite slope 
stability equation for the factor-of-safety index (FS) in a Monte Carlo simulation approach.  The 
equation is solved deterministically by sampling from parameter distributions and calculating the 
FS for each iteration at each RasterModelGrid node.  The probability is determined by the 
number of iterations where FS ≤ 1.0, count(FS ≤ 1.0)/n(), where n is sample size. The resulting 
output is a spatially distributed probability of failure over the modeled domain. 
 
This methods within the LandslideProbability class (i.e., the component and not the driver) are 
described below with code snippets: 
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calculate_landslide_probability() 
● Create arrays for storing output 
● Execute a for loop that loops through each node, calculate FS, mean relative wetness, 
probability of failure, and a histogram of FS values for the last node to check distribution being 
created. 
● Assign mean relative wetness and probability of failure as fields in the RasterModelGrid 
for later plotting. 

 
calculate_factor_of_safety() 
● This method is called within the previous for loop above. This method generates 
distributions of the parameters for the individual node and then calculates the FS for the number 
of iterations (n) specified.   
● In the process, this method calculates the relative wetness n times and stores the mean.  
The mean FS and probability of failure are also calculated.  
● The calculated variables and their summary variables are stored in arrays.  
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4. Exporting, Plotting and Visualization 
4.1. Exporting 
There are several ways to assess results.  Some users may elect to extract results into a dataframe 
and write the dataframe to a .csv file.  This file can then be read and analyzed externally in other 
Python scripts, ‘R’, Matlab, etc.  Landlab also provides a function to write field assigned to the 
RasterModelGrid into ASCII files that can be converted to rasters in a GIS program.  Code 
examples for these options are shown below. 
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4.2. Plotting and Visualizing 
After the model is run, both inputs and outputs can be plotted using the matplotlib library.  
Below is an example for plotting a parameter (slope) assigned to the RasterModelGrid. For more 
customization options, the matplotlib.pyplot documentation is recommended: 
http://matplotlib.org/api/pyplot_api.html . 

 
The output for the above code is shown below.  This is for a portion of North Cascades National 
Park Complex in northern Washington (Fig. 2). Black areas are excluded portions of the domain. 

 
Fig. 2 – Slope (dimensionless) used as an input in the LandslideProbability component. 
  
Adding contours helps interpret the inputs and results.  These can be created using the z array 
containing elevation generated in Step 2 above when creating the RasterModelGrid from a DEM.  
The example below is the probability of failure estimated the same area above with Monte Carlo 
simulation (Fig. 3).   
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Fig. 3 – Probability of failure estimated for a portion of the park from the LandslideProbability 
component.  Code used to generate plot is provided below the figure. 
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Chapter 4. A new approach to mapping landslide hazards: integration of 
statistical and process-based models in the North Cascades of Washington, 
U.S.A. 
 
Abstract 
We developed a new approach for mapping landslide hazard by integrating probabilities of 
landslide impact derived from a data-driven statistical approach and process-based model of 
shallow landsliding. Our statistical approach integrates the influence of seven site attributes on 
observed landslides using a frequency ratio method.  Influential attributes and resulting 
susceptibility maps depend on the observations of landslides considered: all types of landslides, 
debris avalanches only, or source areas of debris avalanches.  These observational datasets 
reflect the capture of different landslide processes or components, which relate to different 
landslide-inducing factors.  Slopes greater than 35° are more frequently associated with landslide 
initiation, while higher landslide hazards at gentler slopes (<30°) reflect depositional processes 
from observations of all landslide types or debris avalanches. Source areas are associated with 
mid to high elevations (1,400 to 1,800 m), linked to ecosystem transition (e.g., forest to barren), 
while all landslides types and debris avalanches show increasing frequency in lower elevations 
(< 1,200 m). Slope is a key attribute in the initiation of landslides, while lithology is mainly 
linked to transport and depositional processes.  East (west) aspect is a positive (negative) 
landslide-influencing factor, likely due to differences in forest cover and associated root 
cohesion.  The empirical map derived from all landslide types is combined with a previously 
developed physically-based probabilistic map to produce an integrated probabilistic map of 
landslide hazard for initiation, transport, and deposition processes. We apply our approach in 
North Cascades National Park Complex in Washington, USA, to provide multiple landslide 
hazard maps that land managers can use for planning and decision making, as well as educating 
the public about hazards from landslides in this remote high-relief terrain.  

4.1 Introduction 
Landslides disrupt aquatic habitats (May et al., 2009; Pollock 1998), damage infrastructure such 
as roads, utilities, and dams (Ghirotti, 2012; Baum et al., 2008), and harm people (Wartman et 
al., 2016; Taylor and Brabb, 1986). Landslide hazards are expected to grow globally with 
growing extremes in the climate (Coe 2016; Haeberli et al. 2016; Crozier 2010). Maps of 
landslide hazards, quantified as a probability of landslide initiation or impact, are developed in a 
number of different ways, including various empirical methods that use the location of existing 
landslides to statistically infer potential instability and process-based models that relate 
geotechnical properties of hillslopes and hydro-climatic input to landslide susceptibility. While 
detailed quantitative and categorical climatic, geologic, ecologic, and pedologic information can 
be used in statistical models, process-based model inputs are more limited to hydrologic and 
geotechnical properties of soils and plant root cohesion, which are sometimes not sufficient to 
represent impacts of local geology and microclimate for landslide initiation. To date, data-driven 
empirical research on landslide hazard mapping (Corominas et al. 2012; Lee 2005; Chung and 
Fabbri 2003) has been typically conducted independently from hydroclimate-driven modeling of 
landslides that largely focus on hydrologic controls on landsliding (Wooten et al., 2016; Cevasco 
et al., 2014). There is need for unifying these two lines of research to provide regional scale 
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landslide prediction for resource management and hazard mitigation strategies. This need is 
addressed in the North Cascades region of the state of Washington, USA using field observations 
and modeling. 
 
Most mountain ranges are susceptible to landsliding due to their steep geomorphology, loose soil 
development, geology, and high precipitation (Coe 2016).  Although advancements in landslide 
hazard assessment and prediction are improving with more advanced computational ability 
(Anagnostopoulos et al., 2015; Bellugi et al., 2015, Bordoni et al., 2015; Baum et al. 2014), it 
continues to be challenging to apply models at large scales for a wide variety of landslide types 
(van Westen et al., 2006; Corominas et al., 2014).  Physically-based models require considerable 
data on the spatial-temporal characteristics of the landscape and triggering hydrometeorologic 
events.  These models are also usually restricted to a specific type of landslide and can be limited 
in representing local geologic, soil, and hydrologic conditions that may be difficult to observe 
and map in the field and parameterize in model theory and relate to triggering mechanisms.  On 
the other hand, while empirical models of landslide potential cannot represent the triggering 
conditions that drive process-based models, they can help fill in the gap in static conditions that 
lead to landslide-prone landscapes, such as geological susceptibility, when landslide inventories 
exist.  Linking these physically and empirically-based models can improve the spatial-temporal 
patterns of landslide hazard at medium to large scales to provide support tools for authorities 
addressing risk management.                                     

Statistical, empirically-based landslide susceptibility approaches indirectly account for 
hydrologic and soil mechanistic processes.  These models assess the inherent or quasi-static 
stability of hillslopes derived from statistical associations (e.g., correlations) between site 
attributes or characteristics and an inventory of past landslides (e.g., Dai and Lee 2002; Gupta 
and Joshi 1990; Pachauri and Pant 1992; Kirschbaum et al. 2012). These models focus on 
prevailing conditions that predispose hillslopes to failure (Hungr et al., 2014), typically 
providing general indices of relative landslide susceptibility or spatial probabilities applicable to 
the study location and cannot represent causal factors or triggering conditions that change in time 
(van Westen et al. 2006; Sidle and Ochiai 2006). Empirically-based modeling provides the 
ability to capture hillslope preconditioning or physical processes that are not represented by 
simplified processed-based approaches by incorporating potential site-specific factors affecting 
landsliding, but poorly quantified by theory.  Outcome of such analyses depend on the 
completeness of observations, hindering the use of such techniques over large areas where 
complete inventories are typically lacking. Since empirical models are based on observation of 
past landslides, the preconditioning relationships are assumed to prevail into the future until an 
updated study is completed (Lepore et al., 2012).   
 
The Frequency Ratio (FR) method is a commonly used statistical approach to identifying 
landslide susceptibility and has been found to perform as well as more rigorous statistical 
approaches such as logistic regression (Hong et al., 2017; Wu et al. 2017; Lepore et al. 2012; 
Kirschbaum et al. 2012; Lee et al. 2007; Lee and Pradhan 2006).  We use this bivariate 
methodology to relate landslide occurrence to seven surface attributes (SAs) through direct and 
indirect measures.  Slope, curvature, and lithology directly affect the forces and geotechnical 
properties in surface sediments.  Land cover provides a surrogate for root cohesion and 
topographic wetness index has been used as a surrogate for soil pore water pressure (Borga et al 
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2002).  Elevation can represent the effects of climate, weathering, vegetation, ground motion, 
and glacial processes, if any, as well as coincide with variability in slope, soil depth, and land use 
(Sidle and Ochiai 2006). Aspect provides an indication of solar insolation, vegetation type and 
cover density, snow and ice loading, and soil moisture levels via evapotranspiration (Beaty 1956; 
Gokceoglu et al. 2005).    
 
We compared the FR empirical landslide assessment to a recently completed physical model 
(Strauch et al. 2017) to understand the SAs that may predispose a hillslope to failure as well as 
the landslide hazard patterns developed from these two approaches.  The landslide assessment 
using a physical model was based on the infinite-slope stability model that solves the ratio of 
stabilizing to destabilizing forces on a failure plane parallel to the land surface.  This model 
predicts the spatial-temporal probability of shallow landslide initiation triggered by rainfall and 
snowmelt.  Building on the advantages from the empirical and physical models, we integrated 
the two models to develop an integrated map of landslide hazard.  The integrated map can be 
used to identify landslide hazards that may originate from either the initiation of landslides or the 
transport and deposition (i.e., runout) of the landslide material (Fig. 4.1).  Using this approach, 
we investigate the: (1) pre-conditioning factors, especially lithology, that correlate with mapped 
landslides, (2) variability in SAs and estimated hazard based on different mapped landslide 
features, (3) potential mechanisms related to SAs and landslides, and (4) differences from 
empirical hazard identification and probability of landslide initiation derived from the physical 
model. 

 
Figure 4.1 - Primary landslide features showing source, transport, and deposition areas illustrated over 
aerial image from Google Earth taken July 2016.  Location in North Cascades National Park Complex 
about 4 km north of Newhalem, Washington.   

This paper describes research designed to address the following questions: 1) How can we 
quantify relative contributions of local topography, geology, and ecology on landslide frequency 
and derive spatial probabilities of landsliding using a statistical model? 2) How would 
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probabilities of landslide initiation derived from empirical observations compare with those 
derived from process-based models? 3) How can we combine empirical and process-based 
models for landslide susceptibility to improve the prediction of landslide hazards?  The 
organization of this paper is as follows. Our methodology is discussed in Section 4.2, including 
the FR method, model application, data compilation, and model integration approach.  Section 
4.3 details our results of the FR application and susceptibility index as well as various hazard 
maps developed. We end with some overall concluding thoughts. 

4.2 Methodology 
4.2.1 Frequency Ratio 
We characterized the susceptibility of hillslopes to landslide impact using an empirically-based 
Frequency Ratio, FR, approach (Lee et al., 2007; Kirschbaum et al., 2012).  This bivariate approach 
relates the spatial data of selected SAs (e.g. slope, lithology, vegetation) and their subcategories 
(e.g., lithology class, vegetation type) to areas with and without historically identified landslides. 
Subcategories of each SA can be a categorical variable such as type of lithology or a quantitative 
variable defined with certain ranges such as slope and aspect. For a given SA, identified by m, and 
its subcategory, n, FRn|SAm is calculated (Eq. 1) as the ratio of the fraction of landslide area in 
each subcategory (LASAm,n) with respect to the landslide area within the entire study domain, SD, 
(LASD), to the area fraction of the selected SA subcategory within the SD (ASDm,n) with respect to 
the area of the study domain (ASD).  FRn|SAm is essentially an odds ratio, and rearrangement of the 
terms leads to a density ratio of landslides for the subcategory n of SA m over the landslide density 
for the SD (Miller and Burnett 2007).  

 (1) 

The interpretation of FR is as follows (Lepore et al. 2012): 
●   FR < 1: indicates proportionally less landslide area with subcategory n of SA m, than in the 

entire SD for the same attribute subcategory; hence the odds of a landslide are less in SA m 
subcategory n than the SD. 

●   FR ≈ 1: means there is roughly the same proportion of landslide areas with SA m in 
subcategory n as in the SD for the same attribute subcategory; thus, the odds of a landslide are 
the same for the SA subcategory as the SD. 

●   FR > 1:  reveals a higher percentage of landslide area with subcategory n of SA m, than in the 
entire SD for the same attribute subcategory, so there is a propensity or greater odds for failures 
to occur with this SA subcategory compared to the SD. 

 
A susceptibility index, SI, integrates these FRs and is calculated (Eq. 2) at each grid cell, i, of the 
SD as the sum of FR values for all SAs and their associated subcategory.  SI is a measure that 
relates local static (or slowly changing) site characteristics to relative frequency of landslides.  
High SI values indicate an increased frequency of landslides, while low SI values suggest low 
landslide frequency, within the timeframe of the identified landslides based on the SA 
considered.   Probability of landslide (P(LSr|SIr)) is derived from SI by binning SI and 
calculating the ratio of number of grid cells with landslides N(LS) to the number of all grid cells, 
N, within each SI bin, r, Nr (Eq. 3).   
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To calculate spatially continuous empirical probability of landsliding at each grid cell of a DEM, 
we used the binned SI-based probability estimates. We first developed empirical relationships 
between SI and P(LSr|SIr) for all landslide types or select landslide features and used these 
empirical functions across the landscape with SI defined at each grid cell to estimate probability 
of landslide impact at each cell.  These probabilities are assumed to represent spatial maps of 
empirical landslide probability based on the static landscape attributes used in the analysis. 
 
We considered seven SAs in our analysis: slope, elevation, aspect, curvature, land use-land cover 
(landcover), lithology, and topographic wetness index. We included all SAs to develop empirical 
models relating SI to landslide probability, similar to Kirschbaum et al. (2012) and Lepore et al. 
(2012). Our first analysis considered all landslide types together, as is commonly done in multi-
factor analyses (Sidle and Ochiai 2006; Ayalew et al. 2004; Carrara et al. 1991).  Our second model 
focused on debris avalanches, including their initiation, transport and deposition areas, as a whole 
(Fig. 4.1). In a third model, we considered only the source (initiation) areas of debris avalanches, 
identified as the upper 20% of elevation within mapped debris avalanche polygons. This tiered 
approach can be used to quantify the relative contributions of different landslide features to overall 
landslide hazard in a region. We hypothesize that empirical probabilities estimated by relating 
landslide observations to site attributes that are not directly used in physical models of landslide 
initiation can be “fused” with physical models to improve predictions of additional landslide 
processes other than initiation alone.   
 

4.2.2 Model application 
4.2.2.1 Study Area 
Our study area is within the geographical limits of North Cascades National Park Complex 
(NOCA) managed by the U.S. National Park Service. NOCA has experienced damaging and 
disruptive landslides that have impacted infrastructure and disrupted public use of the park.  
NOCA is approximately 2,757 km2, with 93% wilderness (e.g., no motorized or mechanized 
devices) (DOI-NPS 2012), which is ideal for studying landslides primarily triggered by natural 
causes.  The landscape is rugged (elevation ranging from 100 to 2,800 m) with over 300 alpine 
glaciers, jagged peaks, and numerous streams. The north-south oriented Cascade Mountains and 
storms, typically originating from the west, lead to a strong rainshadow effect (Mustoe and 
Leopold 2014; Roe 2005).  Orographic uplift of Pacific Ocean air masses generate a spatial 
precipitation gradient with an average of 4,575 mm of precipitation falling annually on the 
highest elevations west of the crest, while lowlands east of the crest receive a mean annual 
precipitation of 708 mm. Air temperatures vary highly depending on season and elevation with 
the warmest month typically August and the coldest month is January; average daily high and 
low is about 25° C and 4°C, respectively, for these months in Newhalem, Washington.  
 
Vegetation in NOCA is dominated by forest, particularly coniferous tree species, up to about 
2,000 m (Strauch et al. 2017; Agee and Kertis 1987).  A patchwork of shrubs, herbaceous 
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vegetation, and barren land is found above this elevation common in alpine environments and in 
the paths of frequent snow avalanches.  Above 2,400 m is mostly barren landscape. The 
underlying geology is composed of a primarily old Mesozoic crystalline and metamorphic rock 
originating far to the south (Haugerud and Tabor 2009).  The landscape has been shaped by Ice 
Age glaciers, alpine glaciers, rivers, and mountain uplift that continues today (LaHusen et al. 
2016; Mustoe and Leopold 2016; Collins and Montgomery 2011; Pelto and Riedel 2001).   
 
Landslide (LS) inventory data are the most requisite information needed for an empirical 
statistical analysis (Lepore et al. 2012).  Landslides were mapped in the park as mass wasting 
landforms during a park-wide landform mapping study by the National Park Service (NPS) 
scientists at NOCA (Fig. 4.2; Riedel and Probala 2005).  Landslides were identified using color 
stereo-pair 1998 air photos at 1:12,000 scale, 7.5 minute topographic maps, bedrock geology 
maps, and field investigations (e.g., Riedel et al. 2012).  The minimum mapping unit was 
approximately 1,000 m2 except for some smaller slump units. Landslide linework was transferred 
to a digital format, peer reviewed, and polygons edited into final form in geographical 
information system (GIS) software using National Agriculture Imagery Program (NAIP) imagery 
and 10-m DEM.  The park-wide landform mapping study identified six different types of mass 
wasting: rock fall/topple, debris avalanche, debris torrent, slump/creep, (Table 4.1) sackung, and 
snow avalanche-impacted landforms (SAILs) (Riedel et al.2012). The single sackung mapped in 
NOCA represents a gravitational spreading or slope deformation, sometimes found near ridge 
tops.  All landslide types were included in the analysis except for SAILs, which are created by 
snow avalanche impacting unconsolidated sediments rather than slope instability. There are 1618 
landslides mapped in NOCA: falls/topples (68%), debris avalanches (17%), debris torrents 
(10%), slumps/creeps (4%), and one sackung (<1%) (Fig. 4.2; sackung not shown).  
 
4.2.2.2 Study domain and Parameters 
We constrained our analysis to soil-mantled landscapes by excluding high elevation areas 
covered by glaciers, permanent snowfields and exposed bedrock, as well as wetlands and other 
water surfaces, based on landform mapping and maps of lithology and landcover.  We also 
exclude slopes less than 17° because this slope threshold was found to generally separate 
colluvial mass wasting and debris transport processes from fluvial processes in this region 
(Strauch et al. 2017). The area included in the analysis covers about 79% of NOCA’s land area. 
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Figure 4.2 - Four landslide types mapped within North Cascades National Park Complex (NOCA) in 
Washington, U.S.A. The number and their total area of each type is given in parentheses.  Insert provides 
example of mapping over aerial image from Google Earth. 
 
   Table 4.1 - Landslides mapped as part of landform mapping study used in hazard analysis 

Type  Process Mapping  
Debris Avalanche Extremely rapid moving mixture of rock and 

debris, generally originates from glacially-
sourced areas, over-steepened valley walls, and 
in many cases on hydrothermally altered 
bedrock 

Includes headwall scar, path, 
and deposit 

Debris Torrent Channelized rapid and/or sudden flow of 
material entraining debris stored in stream 
channel while moving down slope 

Only the deposition areas 
within a debris cone 

Slump and Creep Slumps - rotational slip of cohesive sediments, 
usually triggered by undercutting of steep slopes 
along riverbanks. Creeps - slow movement 
induced by saturated ground  

Mapped where deciduous 
vegetation brighter on aerial 
photos, fresh new soil, 
jackstraw or pistol gripped trees 

Rockfall or Rock 
Topple 

Sporadic and shallow detachment of rock falling 
from bedrock cliffs and rock towers 

Mapped where bright and 
highly reflective with little or 
no vegetation on aerial photos. 
Mainly deposition mapped 
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The seven site attributes (SAs) investigated using the Frequency Ratio (FR) approach as they 
relate to mapped landslide activity vary across the NOCA study area.  Slope, total curvature 
(Laplacian of elevation), and aspect attributes were derived using ArcGIS from a 30-m digital 
elevation model (DEM) acquired from National Elevation Dataset (NED) (USGS 2014a).  A 
resolution of 30-m was chosen for comparability with other studies (e.g., Strauch et al. 2017; 
Lepore et al. 2012). Elevation ranges from 107 to 2794 m with 85% of the park between 500 to 
2000 m. Subcategories for elevation were based on 200-m increments with lumping at the ends 
(e.g., <400 m and > 2200 m). Slope subcategories were set at 5° increments with end 
subcategories for slopes 17-25°, and >50°. Curvature was divided into three subcategories: 
convex/diverging, flat, or concave/converging. Aspect (i.e., facing direction of slope) was 
classified into eight compass orientations (i.e., N, NE, E, SE, S, SW, W, NW).  The park’s 
complex topography results in roughly equal distribution among the cardinal and intercardinal 
directions of aspect; however, the southwest quadrant is slightly more common.  
 
The DEM also provides the information needed to derive a distributed wetness index (Beven and 
Kirkby 1979; O’Loughlin 1986), calculated as the natural log of the ratio of specific catchment 
area [L] to sine of local slope.  This index has been used for quantifying the contribution of pore-
water pressure to destabilizing forces in landslide modeling (e.g., Borga et al 2002; Gokceoglu et 
al. 2005).  Wetness index was divided into 5 subcategories based on 20% quantiles: low, low-
medium, medium, medium-high, and high wetness.  Landcover was acquired from the 2014 
National Land Cover Data (NLCD), which is based on 2011 Landsat satellite imagery (Jin, 2013; 
USGS, 2014b). We categorized this into forest, shrubland, herbaceous, water, wetland, snow/ice, 
barren, and developed (e.g., roads, campgrounds). Based on this classification, forest, shrubs, 
and herbaceous vegetation represent 54%, 15%, and 10% of the park, respectively. Barren and 
snow or ice combined cover 17%, typically at the high elevations.  Water and wetlands cover 
about 2.5%, while developed is less than 0.5%. 
 
Lithology provides a description of rock and deposits that indicates composition, strength, and 
age, which can influence the hillslope strength and water redistribution.  Washington State 
Department of Natural Resources (WADNR) provides lithology in its surface geology maps that 
display rocks and deposits as geologic map units (WADNR 2014).  This source of information 
was chosen because it is available for all of Washington, facilitating future applications.  There 
are 48 lithology map unit types within NOCA. These were aggregated into seven subcategories, 
based on similarities in origin and generally increasing strength, called: (1) unconsolidated 
sediment, (2) ultramafic, (3) weak metamorphic foliated, (4) sedimentary rock, (5) hard 
metamorphic, (6) intrusive igneous, and (7) volcanic/extrusive igneous (Table 4.2).   Water and 
ice were not classified. Both landcover and lithology were rasterized to the same DEM grid 
resolution using ArcGIS based on the dominant type of attribute in each grid cell.  Among the 
seven types of lithology, hard metamorphic is most common (41% of NOCA), while ultramafic, 
sedimentary rock, and volcanic/extrusive igneous combined make up less than 5%.     
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Table 4.2 – Classification of Washington Department of Natural Resources surface geology 
from generally weaker (1) to stronger (7) material along with aerial percentages within NOCA in 
parentheses 

Class               WADNR Lithology                             Class                   WADNR Lithology 
Unconsolidated Sediments (12%) Sedimentary Rock (2%) 

1 

alluvial fan deposits 

4 

sedimentary deposits or rocks, undivided 
alluvium continental sedimentary deposits or rocks 
alluvium, older (e.g., alluvial fans & talus) marine metasedimentary rocks 
alpine glacial drift, Fraser-age marine sedimentary rocks 
alpine glacial till, Fraser-age Hard Metamorphic (41%) 
glacial outwash, alpine, Fraser-age 

5 

banded gneiss 
continental glacial drift, Fraser-age mixed metamorphic and igneous rocks 
mass-wasting deposits orthogneiss 
mass-wasting deposits, mostly landslides paragneiss 
mass-wasting deposits, not landslides Intrusive Igneous (21%) 
peat deposits 

6 

acidic (felsic) intrusive rock 
talus deposits basic (mafic) intrusive rocks 

Ultramafic (0.02%) diorite 
2 ultrabasic (ultramafic) rocks (serpentine) gabbro 

Weak Metamorphic Foliated (14%) granite 

3 

heterogeneous metamorphic rocks granodiorite 
hetero. metamorphic rocks, chert bearing Intermediate intrusive rocks 
marble Intrusive breccia 
metasedimentary and metavolcanic rocks quartz diorite 
metasedimentary rocks quartz monzonite 
metasedimentary rocks, cherty tonalite 
metavolcanic rocks Volcanic/Extrusive Igneous (2%) 
amphibolite 

7 

tuffs and tuff breccias 
phyllite, low grade dacite flows 
schist, low grade rhyolite flows 

-- Water and Ice (7%) volcanic breccia 
 

4.3 Results and Discussion 
4.3.1 Frequency Ratio Analysis 
The results of the FR analyses for each site attribute (SA) are presented in Fig. 4.3.  We discuss 
the role of SA starting with debris avalanche source areas as they are hypothesized to represent 
the initiation processes of shallow landslides that transform into debris avalanches. The SAs that 
impact shallow landslide initiation could arguably play common controls on the initiation of 
other types of slope failures.  The frequency analysis shows a clear and growing control of local 
slopes greater than 35o on landslide initiation, which can be considered as the internal friction 
angle of cohesionless sand (Fig. 4.3c).  The source area of debris avalanches is only about 17% 
of the mapped debris avalanche area and 10% of the whole landslide inventory, which 
predominantly maps transport and depositional areas. A small debris avalanche source area in 
steep terrain can lead to large landslide impacts in lower elevations, as the eroded material 
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travels downhill and deposits in gentler gradients. Thus, the runout zones of debris avalanches 
and other mapped landslide types cover more area at gentler slopes typical of lower elevations. 
This process is captured in Fig. 4.3a and Fig. 4.3b where the FR analyses exhibit higher landslide 
hazard at gentler slopes (<30o), more likely associated with transport and depositional processes 
as well as failure of side slopes along glacially incised U-shaped valleys undercut by fluvial 
activity. Others have reported clustering of landslide impacts in lower elevations within valleys 
where hillslopes are steep enough to fail (Megahan et al. 1978; Kelsey 1988; Densmore et al., 
1997; Chalkias et al. 2014). 
 
In the study area, local slopes generally increase on average with elevation, particularly above 
1,400 m (Strauch et al., 2017). The control of steeper slopes on debris avalanche initiation is 
supported by the results for elevation where source areas are associated with mid to high 
elevation (1,400 to 1,800 m) and entire debris avalanches and all landslides types (including 
deposition) have growing frequency in lower elevations (< 1,200 m) with the highest frequency 
falling in elevations <400 m (Fig. 4.3a, b).  Further increase in slopes typically lead to bedrock 
exposure and barren lands that undergo nonlinear creep processes (Strauch et al., 2017; Gabet 
2003; Montgomery 2001; Pack et al., 1998).  In addition to steepening slopes, the observed 
higher frequency of debris avalanche source areas in the mid-to-high elevation range 
corroborates recent findings of an ecosystem transition control on landslide initiation (Strauch et 
al. 2017).  With the cooling of air temperatures beyond forest ecosystem thresholds, the 
transition of forest vegetation (predominant alpine conifers) to mixed shrub and herbaceous 
vegetation types and barren lands with lower root cohesion, lead to higher landslide frequency at 
debris avalanche source areas (Fig 4.3c). The slope and elevation results, however, are likely 
influenced by the mapping approach, which was biased in mapping landslide activity on the 
lower portions of hillslopes that were typically more accessible, and continuous creep and rapid 
slides in barren subalpine and alpine areas were infrequently mapped. 
 
Developed areas have the highest landcover association with all mapped landslide areas, as well 
as with debris avalanches, yet no association with debris avalanche source areas.  This suggests 
that development activities, typically at lower elevations in mountains, may be linked to 
landslides more as an impact from landslides rather than as a causative agent of landslides in this 
study area.  Although dirt roads have been found to disrupt drainage and increase erosion (Croke 
and Hairsine 2006; Montgomery 1994; Swanson and Dyrness 1974), these impacts are not 
evident in NOCA based on the mapped landslides.  In general, forest and barren landcover show 
the least landslide activity compared to other landcover (Fig. 4.3). The forest association likely 
indicates the positive contribution of root cohesion to hillslope stability, whereas the barren 
landcover type results may indicate the effect of mapping completeness or hillslope processes. 
The barren results appear counter to the findings of the physically-based landslide model applied 
at the same location, which found high probability of landslide initiation in barren areas often 
below retreating glaciers (Strauch et al. 2017). However, the FR approach is normalized by area; 
thus, a relatively small number of debris avalanche cells within the barren landcover class can 
lead to low FR values compared to the number of debris avalanche cells within the vegetated 
areas further downslope where debris avalanches deposit material.  
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Figure 4.3 – FR value for different bins of seven SAs based on: a) all landslide types mapped within the 
NOCA study domain, b) debris avalanche landslide types only, and c) source areas of debris avalanches 
represented by the highest 20% of the mapped debris avalanche.  The vertical blue dashed line refers to 
the FR value of 1.0, denoting when no association is found with mapped landslides.  
 
The sources of debris avalanches are linked to eastern and southeastern aspects; 20% and 15% of 
source cells by area occur on these aspects, respectively (Fig. 4.3c). Except for western aspects 
that show the weakest association with landsliding, other aspects show landsliding frequency 
close to the average frequency in the whole study domain.  We suspect that aspect is linked to 
vegetation and moisture regime, which are physical factors affecting the mechanics of soil 
strength. East and south exposures have lower forest cover fractions compared to other aspects at 
mid to lower elevations (< 1,400 m), and forests are largely replaced by barren lands and shrub 
and herbaceous vegetation as elevation increases (Fig. 4.4). Most source areas of debris 
avalanches are associated with shrub and herbaceous vegetation types (Fig. 4.3b, c).  Other 
aspects, especially west-facing slopes have higher fraction of forest cover, likely linked to a 
longer growing season (Evans and Fonda 1990). Lower landslide frequency in western aspects 
can be a result of higher root cohesion of forest vegetation compared to shrub and herbs. 
Additionally, perhaps west-facing aspects experience less variable temperatures and moisture 
regimes or bedrock bedding, jointing, or fracturing conducive to stability compared to other 
exposures (Carson and Kirby 1972; Fischer et al. 2006).  When all landslides are considered, 
northern slopes exhibit growing landslide association while landslide frequency declines in 
southeastern slopes (Fig. 4.3a, b). North-facing slopes have been documented to retain more soil 
moisture than south-facing aspects in northern latitudes (Geroy et al., 2011).  Hillslope 
asymmetry (i.e., steeper slopes depending on aspect) was not found during inspection of average 
slope on the four primary aspects; however, north-south asymmetry has been found to 
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demonstrate reversal based on elevation and at 49° latitude, which correspond to the northern 
edge of NOCA (Poulos et al., 2012).  In general, the relatively similar aspect associations for 
different landslide observation datasets likely indicates the connection of source areas to 
downstream processes of transport and deposition (Fig. 4.1). 

 
Figure 4.4 - Vegetation cover fraction in NOCA on each aspect, taken as the fraction of vegetation type 
within each 200-m elevation band. Aspects categorized here as: a) north (0° to 45° and 315° to 360°), b) 
east (45° to 135°), c) south (135° to 225°), and d) west (225° to 315°), covering 23%, 23%, 26%, and 
28% of NOCA, respectively. Yellow highlighted area represents the strongest elevation association for 
debris avalanche source areas. 

In our study domain, glacial patterns may also influence slope predisposition to failure, 
particularly when considering all landslide types. Glaciers preferentially grow on poleward-
facing slopes where shade and radiation incidence increase glacier mass balance (Evans 2006) 
and expose oversteepened slopes after glacier recession, often with minimal vegetation during 
the first 60 years post deglaciation (Ballantye and Benn 1994; Moore et al. 2008; Pelto 2015; 
Whelan and Bach 2017; Haeberli et al. 2016). Because of the linkage between aspect and slope, 
and the influence of these factors on vegetation and moisture, an index representing the solar 
heating from incident radiation may be a worthwhile attribute to assess landslide frequency.  
Either the heat load index (McCune et al. 2002) or the diurnal anisotropic heating index (Cristea 
et al., 2017; Böhner and Antonić, 2009) could be used as a SA in future landslide assessments.  It 
has also been suggested that landslides generally occur on slopes perpendicular to the general 
physiographic trend of mountains (Gokceoglu et al. 2005). Our finding of a preponderance of 
landslide initiation on east-facing aspects supports this theory given the north-south orientation 
of the North Cascades mountain range.  
 
Comparisons among all landslides, whole debris avalanches, and debris avalanche source areas 
clearly show that unconsolidated sediments, largely derived from transport and depositional 
processes, have stronger association with landslides than other lithologies followed by 
sedimentary rock. This strong association is expected given the inclusion of mass wasting 
landforms in the classification of unconsolidated sediment. The high ultramafic rock association 
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when considering all landslide types is driven by a single topple/fall occurring in this scarce 
lithology (<0.02% of NOCA). With the source areas of debris avalanches, all lithologies except 
for ultramafic rocks produce slides. Widespread observation of debris avalanche source areas in 
all rock types may indicate a large influence of slope steepness on landslide initiation regardless 
of lithology. For debris avalanche processes, sedimentary rock is more associated with transport 
and depositional areas than source areas. Areas without landslide activity were associated with 
weak metamorphic foliated and intrusive igneous lithology (Fig. 4.3a).   
 
The association of landslides on concave/converging versus convex/diverging topography is 
relatively consistent among the datasets and generally consistent with literature due to enhanced 
wetness where vegetative support may be weak in deeper soils (see Hales et al. 2009; Fig. 4.3).  
High wetness index is associated with landslides for all landslide types as well as entire debris 
avalanches (Fig. 4.3a, b).  This result is intuitive as this index is an indicator of increased soil 
saturation and surface runoff.  In contrast, source areas were correlated with low wetness index 
(Fig. 4.3c). As previously discussed, source areas are associated with steep slopes and higher 
elevations, resulting in relatively small specific catchment areas. By definition, wetness index is 
negatively correlated with slope and positively correlated with specific contributing area.  Thus, 
source areas will have a low wetness index when they are from steep slopes with small 
contributing areas (i.e., located higher up on hillslopes).    
4.3.2 Susceptibility Index 
A susceptibility index (SI) is calculated for each grid cell within the study area domain by 
summing FR for each SA. The resulting spatial distribution of SI is right skewed and bimodal 
when considering all landslide types as well as debris avalanches (Fig. 4.5a, b).  The right skew 
indicates that there is a small population of grid cells with high SI compared to the majority.  The 
first mode of the distribution (SI≈7.0) represents average conditions for landslide frequency 
given that we assess seven SAs.  SA subcategories coinciding at the same location can have a 
substantial influence on the resulting SI. Unconsolidated sediment is often at the base of 
hillslopes, which coincides with lower elevation. Therefore, the high FR value for settings 
combining unconsolidated sediment and sedimentary rock lithology with elevation below 400 m 
largely drives the second (smaller) SI mode on the right.  When considering only the source 
areas of debris avalanche dataset, the right skewness persists, while the shape of the distribution 
becomes unimodal. This suggests that the high FR subcategories do not coincide locally when 
examining source areas of debris avalanches (e.g., east and southeast aspects are not necessarily 
>50°).  For source areas, there is also a broader difference in the SI mode for all grid cells 
(SI=6.5) and for landslide cells (SI=7.5), compared to the two other datasets.  
Cumulative distributions for SI, plotted as fraction of area of the study domain less than or equal 
to an SI value, show higher SI values for a given probability for landslide cells than for the entire 
study domain (Fig. 4.5).  Additional support that these distributions are not equal is provided by 
the Kolmogorov-Smirnov test, which rejects the null hypothesis of equal distributions at α<0.01. 
The distributions show that the SI calculated from FR method can differentiate mapped landslide 
locations.  
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Figure 4.5 – Cumulative distributions (column 1) and relative frequency plots (column 2) of Susceptibility 
Index (SI) for all grid cells included in the analysis and the grid cells mapped as part of a mapped 
landslide.  Probability P(LSr|SIr) (column 3) calculated from the ratio of the number of landslide cells to 
the number of all cells with each SI bin (0.5 size) with fitted curves.  Rows represent three analyses of 
mapped landslides: a) all landslide types, b) debris avalanches only, and c) debris avalanche source areas. 

The probability of landslide impact (P(LSr|SIr)) calculated from Eq. (3) are shown in the last 
column of Fig. 4.5.  In calculating this probability in each bin, landslide sample sizes of 40 or 
fewer were aggregated into the previous bin for the highest SI bins (e.g., SI≥11). In all three 
cases, P(LSr|SIr) increases with SI, supporting the statistical power of this empirical approach. 
The SI - P(LSr|SIr) relation is explained by a power function when all landslide data are used 
(Fig. 4.5a, column c). The other two cases, whole debris avalanche data and debris avalanche 
source areas, are better represented by piecewise relations that included polynomial and linear 
fits (all R2>096). The range of probabilities in all cases vary considerably, and grows with the 
sample size of the landslide dataset used, leading to maximum probabilities of 0.30, 0.25, and 
0.014, for all landslide, debris avalanches, and debris avalanche source areas, respectively.  
Nonlinear forms in the SI-P(LSr|SIr) relations reveal the increased sensitivity of the landslides to 
relatively few SAs in this additive method.   These functions were used to derive continuous 
empirical probability maps based on SI values assigned to each grid cell of the study domain.  
Mapped probabilities were limited to the maximum probability from Fig. 4.5.   
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4.3.3 Model Comparison 
A key question of this research was: How can we combine empirical and physically-based 
models for landslide susceptibility to improve the prediction of landslide hazards?  To address 
this question, we used the spatially distributed modeled probabilities of shallow landslide 
initiation P(F) by Strauch et al. (2017) in NOCA. Their model solves the infinite slope stability 
equation coupled to a steady-state topographic flow routing approach using a Monte Carlo 
simulation that accounts for variable uncertainty. The uncertainty of soil depth in Strauch et al. 
(2017) was constrained by a soil development model, and subsurface flow recharge was obtained 
from a regional macro-scale hydrologic model that produced validated historical hydrologic 
simulations. The modeled probabilities are considered as annual probabilities of shallow 
landslide initiation (Strauch et al., 2017).  
 
The physical model predicts the initiation of shallow landslides; therefore, we compared the 
mean probabilities of the physical model with the empirical probabilities developed from debris 
avalanche source areas. The models were compared on the basis of the SI bins developed for 
each dataset by averaging the physical model probabilities for grid cells within each SI bin.  
Through this comparison, our aim was to see how the physical model behaves in relation to the 
empirical classes of SI.  Because the maximum probability was an order of magnitude higher for 
the physical model than the empirical model, we rescaled both probabilities by dividing by the 
highest probability from each model, resulting in a maximum normalized probability of 1.0 for 
each case, to facilitate comparisons between models. The highest mean probability for the 
physical model is 0.138 at P(LSr|SIr)=8.75; the highest probability for the empirical model is 
0.0137 at P(LSr|SIr)=11.0  (Fig. 4.6a).  Lower empirical probabilities are due to the limitation of 
landslide observations available in our source area dataset (i.e., small number of cells).  In 
general, the two models are directionally consistent for SI≤9.0 (Fig. 4.6a, c). Both probabilities 
increase as SI increases up until about SI=9.0, above which the physical model mean probability 
declines (Fig. 4.6a).  
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Figure 4.6 - a) Comparison of rescaled P(LSr|SIr) from empirical model for debris avalanche source areas 
with the mean probability of landslide initiation P(F) from the physical model within 0.5 size bins of SI 
(rescaled by dividing by maximum). Portion of NOCA showing: b) P(F) from physical model; and c) 
same area showing only P(F) corresponding to the two regions of SI (region 1: SI≤9; region 2: SI>9, 
depicted in (a)) overlain on hillshade. Location of the portion of NOCA shown as box in Fig. 4.7. 
 
To elucidate the divergence between probabilities at high SI values, we classified two regions of 
SI and examined the physical model P(F) (Fig. 4.6b) within each region (Fig. 4.6c).  Regions 1 
and 2 cover 89% and 11% of the study domain, respectively. Areas in region 1 (Fig. 4.6a), where 
SI≤9.0 and physical model probabilities are on average higher than in region 2, have a mix of 
slopes, but typically are less steep than region 2.  The wetness index in region 1 is higher and 
vegetation is predominantly forest.  Lithology is mostly a mix of hard metamorphic and intrusive 
igneous, with average (i.e., FR≈1) to low association with observed source areas. Areas where 
SI>9.0 with relative low probabilities predicted by the physical model (region 2) have steep 
slopes (>35°), low wetness index, and land cover composed of primarily herbaceous vegetation 
or barren.  These characteristics lead to a high empirical SI based on the FR analysis. Lithology 
is mostly hard metamorphic, an average FR value in the empirical model, but a relatively 
competent underlying lithology (Riedel et al. 2012), suggesting that lithology may not be 
significantly related to landslide initiation in region 2. 
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A potential reason the physical model predicted lower probabilities on average in region 2 may 
due to soil depth.  Visual examination of overlain attribute rasters show region 2 overlaps with 
areas that have a thin veneer of soil and steep slopes. The median values of modeled soil depths 
in region 2 from Strauch et al. (2017) were typically shallow <0.5 m and most areas <0.1 m, 
generally consistent with the coarse-scale Soil Survey Geographic Database (SSURGO) (DOA-
NRCS 2016) soil depth data.  Thus, the thin soil may have insufficient mass to fail in the infinite 
slope model, but empirical evidence suggests that these areas may also be unstable.  Other areas 
in region 1 where soils are also shallow like region 2, but the physical model probabilities are 
high, have gentler slopes (25 to 35°) than region 2, which could lead to reduced drainage and 
increased pore-water pressure during rainstorms or snow and ice melt sufficient to induce failure.  
 
The physical model appeared to capture the initiation of landslides for almost 90% of the study 
domain in region 1 (Fig 4.6a). In region 2, despite the inverse dependence of the mean P(F) to SI, 
the modeled probabilities of shallow landslide initiation are still nearly an order of magnitude 
greater than those empirically obtained from observations. Therefore, we hypothesize that 
physically modeled probabilities for landslide initiation better represent hazards of landslide 
initiation compared to the empirical-based probabilities obtained from SI, which were largely 
based on limited observations that may have missed mapping of landslide initiation areas.   
 
In our effort to integrate the two models, next we illustrate the behavior of the mean P(F) in 
relation to SI obtained from the whole landslide data set. Using the original probabilities (i.e., not 
rescaled), we found an almost inverse or mirror pattern in the probabilities from the physical and 
empirical models (both all landslide types and debris avalanches datasets) along the SI range 
(Fig. 4.7). This pattern suggests that the empirical model is effective at identifying hazard from 
the transport and depositional regions of landslides, while the physical model captures the 
initiation areas.  Transport and deposition areas are identified through increasing SI driven by 
high FR values associated with low elevation, gentler slopes, and unconsolidated sediment 
lithology. Unconsolidated sediment lithology is a strong driver of the highest probability 
locations for these datasets and is commonly found at the base of valley walls and valley bottoms 
where deposition occurs.  

 
Figure 4.7 - Comparison of probabilities derived from empirical model for: a) all landslide types and b) 
debris avalanches overlain with the average probability from the physical model for grid cells within each 
0.5 bins of SI. 
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4.3.4 Landslide Hazard Maps 
Hazard maps were made in ArcGIS using the SI to P(LSr|SIr) functions described in Sect. 4.3.2 
and shown in Fig. 4.5 (column 3).  In general, the probability of landslide impact declines as the 
amount of observational information decreases from all landslides (Fig. 4.8a), to debris 
avalanches (Fig. 4.8b), and debris avalanche source areas (Fig. 4.8c). This pattern reflects the 
smaller area of observed landslide data used in each case compared to the study domain.  When 
considering all landslides, the highest probabilities are located near the base of valley walls and 
in topographic depressions or hollows (Fig. 4.8a). The hazard map developed from the empirical 
model using only debris avalanches (Fig 4.8b) also shows higher probabilities in the valley 
bottoms, but lower probabilities than the all landslides map at higher elevations in alpine areas 
where the footprint of debris avalanches is smaller compared to the deposition area, reducing the 
overall probabilities in the FR approach. Spatial patterns of landslide probabilities obtained from 
the source areas of debris avalanches (Fig. 4.8c) departs from the other two empirical models 
with the highest probabilities in middle and upper portions of valley walls, similar to the physical 
model (Fig. 4.9b). 

 

 
Figure 4.8 – Maps of probability of landslide impact derived from empirical model based on: a) all 
landslide types, b) debris avalanches, and c) and source areas of debris avalanches. Boxes indicates close-
up areas shown below with overlain landslide types on hillshade.  Gray areas excluded from analysis. 
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We developed an integrated landslide hazard map using the empirical model based on all 
landslides dataset and the physical probabilistic solution of the infinite slope stability model from 
Strauch et al., (2017) to obtain a probability of landslide impact that integrates initiation, 
transport, and deposition hazards of landslides.  The physical model helps highlight the likely 
landslide initiation that are masked or missed in the empirical model approach because of the 
areal dominance and biased mapping of depositional areas.  We combined the empirical model 
(Fig. 4.9a, 4.10a) with the physical model (Fig. 4.9b, 4.10b) by selecting the highest probability 
from either model within each grid cell that would represent both ends of the landslide hazard 
spectrum from initiation to depositional impact (Fig. 4.9c, 4.10c). 
  

 
 
Figure 4.9 – Maps of probability of landslide impact based on: a) empirical model of all landslide types, 
b) physical model from Strauch et al. (2017), and c) integrated model for the North Cascades National 
Park Complex. Box indicates close-up locations in Fig. 4.10.  Gray areas excluded from analysis and blue 
areas depict water. 
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Figure 4.10 - Section of NOCA showing probability of landslide impact from: a) empirical model based 
on all landslide types, b) physical model, and c) integrated map derived from highest per pixel value from 
either empirical model (a) or physical model (b) overlain with mapped landslides; d) aerial image sourced 
from World Imagery, Esri Inc.2 of same area overlain with landslides.  Location shown as box in Fig. 4.9. 

The integrated map shows high probability of landslide impacts in the alpine region below 
receding glaciers as well as at low elevations near the base of hillslopes that are likely deposition 
zones (Fig. 4.9c, 4.10c).  Converging areas or hollows are also relatively higher probability, 
highlighting where soil and water can accumulate and lead to failure if steep enough and sparsely 
vegetated. In general, mid-slope valley walls appear to be the least likely to be impacted by 
landslides.  These areas are typically heavily forested in NOCA (Fig. 4.10d), which can increase 
the root cohesion within the soils.  The presence of forest also indicates that landslides are 
infrequent on much of the mid-slope areas with the exception of transport within narrow 
channels and snow avalanche tracks.  Rocky outcrops are also present along these valley walls 
over steepened from the last glacial maximum (20 kya) and retaining too little soil for mass 
wasting processes and thus, have low probabilities. 
 
To investigate the spatial distribution of model probabilities in the study domain and inside 
landslides, we plot the cumulative distribution of probabilities from the empirical model based 
on all landslides, the physical model (Strauch et al., 2017), and the integrated model (Fig. 4.11).  
When comparing between the study domain and inside landslides, the integrated model shows a 
higher fraction of landslide cells with higher probability than the study area as a whole, indicated 

                                                
2 Images created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and 
are used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® software, 
please visit www.esri.com. 
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by the shift in the cumulative distribution (red line) to the right (Fig. 4.11).  The distributions 
generally show a high portion of the landscape has relatively low probability of landslide impact 
(<0.2), while a small portion has high probability of impact (>0.8), proportions depend on the 
model. The empirical model distributions for the study domain and landslides shows that all cells 
have P(LS) ≤ 0.3, the model maximum. Of study domain cells, approximately 10% of the study 
domain has a probability greater than 0.06 and up to this maximum, whereas the same fraction of 
landslide cells has double the probability (~0.12).  The integrated and physical model show the 
same fraction of the study domain above (0.12) and below (0.88) above a probability of 0.25 
(Fig. 4.11a). Below this probability, a greater fraction of the physical model has lower 
probabilities than the integrated model.  This reflects the increase in areas of low probability 
compared to the original physical model probabilities when including the transport and 
depositional processes captured by the empirical model in an integrated susceptibility map.  In 
both plots (Fig. 4.11), the integrated model spatially expands the landslide hazard. For example, 
when the empirical model is considered, only 90% of the domain has probabilities less than or 
equal to 0.08, while the integrated model gives probabilities less than or equal to 0.4 for 90% of 
the domain. This is a considerable increase in risk of landslides when the two complementary 
approaches are combined.  
 

                  
 
Figure 4.11 - Cumulative distribution of the probability of landslide impact P(LS) for the empirical model 
using all landslide types (blue), the physical model (black), and the integrated model (red) for: a) all grid 
cells in study domain and b) grid cells inside landslides. Data for landslides curve for the physical model 
in (b) is limited to only debris avalanche source areas. 

4.4 Conclusions 
Empirically-based probability hazard maps were developed from a statistically-based 
susceptibility index, which integrated the influence of site attributes on observed landslides 
based on a frequency ratio approach. Resulting susceptibility depends on the observations of 
landslides considered: all types of landslides, debris avalanches only, or source areas of debris 
avalanches.  A previously developed physically-based probabilistic map was combined with the 
empirical map based on all landslide types to produce an integrated overall probabilistic map of 
landslide hazard for initiation, transport, and deposition processes.  The frequency analysis and 
hazard map development identified several key findings: 
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●   Frequency analysis shows a clear and growing control of local slopes greater than 35° on 
landslide initiation, while higher landslide hazard at gentler slopes (<30°) reflects 
depositional processes. 

●   Debris avalanche source areas are associated with mid to high elevation (1,400 to  
1,800 m), while all landslides types and whole debris avalanches have growing frequency 
in lower elevations (< 1,200 m) with the highest frequency falling in elevations < 400 m. 

●   Slope is a key attribute for the initiation of landslides, while lithology is mainly tied to 
transport and depositional processes. 

●   The transition from subalpine to alpine vegetation and barren lands (e.g., above 
forestline) with lower root cohesion leads to higher landslide frequency at debris 
avalanche source areas.  

●   East (west) aspect is a positive (negative) landslide-influencing factor, likely due to 
differences in forest cover and associated root cohesion and moisture. 

●   High association with landslides in developed areas, suggests a disproportionately high 
disruption of infrastructure compared to other land use-land covers. 

●   Empirical statistical modeling adjusts the probability of landslide impact based on 
physical mechanisms controlling landslide initiation by including additional information 
on factors that influence the landscape susceptibility to failure. 

Although the approach is applicable elsewhere, our results from the FR analyses are specific to 
the region they were developed and may differ in another location with different lithology and 
landslide inventories.  Additionally, the probabilities are likely to change as local conditions 
change from disturbance such as fire or as climate continues to change. We provide multiple 
landslide hazard maps for NOCA that land managers can use for planning and decision making, 
as well as educating the public about hazards from landslides so they can minimize risks from 
these geohazards. 
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